Power Amplifier Envelope Tracking and Digital Pre-distortion/Crest Factor Reduction Technologies and PXIe Solution

Robert Hood Solutions Business Development

Agenda

PA ET/DPD/CFR Test Technologies

- What are the key challenges for PA design?
- What are the CFR, DPD and ET technologies for PA?

Keysight PA Test Reference Solution

- PXIe Solution for PA Test
- PXIe Solution Architecture

The Evolution of a Handset PA

© Keysight Technologies 2015

ET and PADs inside The iPhone 6

Orange: Qualcomm MDM 9625M LTE Modem Yellow: Skyworks 77802-23 Low band LTE PAD Green: Avago A8020 High band PAD Blue: Avago A8010 Ultra high band PAD + FBARs Purple: Skyworks 77803-20 Mid band LTE PAD Black IvenSense MP67B 6 axis gyro / accelerometer

iPhone 6 teardown iFixit Sept 2014

Red: Qualcomm QFE1000 ETPS Orange RFMD RF5159 Antenna switch Yellow Skyworks 77356-8 Mid Band PAD other side of PCA

Black: Qualcomm WTR1625L RF transceiver Red: Qualcomm WFR1620 Rx only companion, for carrier aggregation Orange: Qualcomm PM8109 Power management IC

Three Methods to increase PA efficiency and linearity

ET: Envelope Tracking

DPD: Digital Pre-Distortion

CFR: Crest Factor Reduction

RF PA/FEM I Reference Solution

Envelope Tracking vs. Fixed Supply - Concept

Envelope Tracking - The How & Why

Continuously adjust the supply voltage to change the PA's operating point

- Improve battery life
- Increase RF amplifier performance over broad frequencies
- Lower distortion
- Reduce heat dissipation

Envelop Tracking - Shaping Table Design

- A linear relationship between the IQ magnitude & modulated supply is not optimum
- A shaping table is used to optimize the PA's performance for efficiency or linearity

Digital Pre-Distortion (DPD) - Concept

DPD corrects PA nonlinearities resulting in higher performing power amplifiers

What is the DPD test procedure?

Crest Factor Reduction - The How & Why

Reduce the PAPR to limit distortion produced in the PA V_{Out}

- CFR is not a linearization technique
- Two methods widely used: 1) Clipping and Filtering 2) Peak Windowing

CFR – Peak Windowing

- Peak windowing aims to smooth the sharp corners which result from hard clipping
- In the peak windowing algorithm, clipping is implemented by multiplying the original signal in the region of the peak with a windowing function such as Kaiser, Gaussian and Hamming.

ACP-EVM Performance Trade-off Using CFR

Example: CFR using clipping & filtering

If ACPR fails the 3GPP spec., applying CFR can give a few dB improvement, enough to pass or provide some margin but EVM will increase.

Where do ET, DPD and CFR apply?

	ET	DPD	CFR
WLAN	Exploring/Verification On/Off HS (Mainly in R&D)	Access Point (AP) and Station (STA)	Access Point (AP) and Station (STA)
Cellular	UE	BTS (normally complicated with real-time feedback) UE (normally pen-loop)	BTS
Benefit	Save Power Improve linearity	Improve Linearity	Improve linearity (PAPR)

Techniques to Mitigate PAPR Related Issues Know your alphabet

Amplifier sizing

Back-off

Crest Factor Reduction

- Distort RF PA input signal to reduce distortion produced by PA compression
- Choose the method and compression level to match the PA characteristics

Digital pre-distortion

- Distort the RF PA input to cancel distortion produced by the PA
- Choose the method to suit the baseband capability and the PA characteristics

Envelope tracking

- Drive the RF PA with a fully modulated RF signal and synchronously modulate the PA supply voltage
- Adjust the RF PA operating point by controlling the RF / Envelope magnitude ratio, called the shaping table, or de-troughing function

Agenda

PA ET/DPD/CFR Test Technologies

- What are the key challenges for PA design?
- What are the CFR, DPD and ET technologies for PA?

Keysight PA Test Reference Solution

- PXIe Solution for PA Test
- PXIe Solution Architecture

What do we need to test in a PA?

Basic Performance

- P_{out MAX}, P_{3dB}
 - With ramped power signal
- Gain, ACPR, PAE
 - With power servo technique
- Good Neighbor
 - Harmonic generation, intermod, spectral regrowth, in-band Rx noise
- Compatibility
 - Return loss, AM/AM, AM/PM, EVM, mismatch tolerance
 - Passive components of PAD filters, duplexers
- Measurements as a function of frequency and output power level
- Performance under ET and DPD?

Keysight Reference Solution Typical Block Diagram (Release3.0: VSG/VSA)

Keysight Reference Solution Typ. Block Diagram (Releases3.1: VXT)

Power Amplifier Reference Solution

Minimize Customer Investment to Evaluate & Deploy

- Keysight Provided "Recipe" for Power Amplifier Tests using Keysight PXI Modules with LXI and Third Party Products, as needed
- Provides Demonstration of Capabilities, Measurement Ranges and Test Times
- Configurable to Test Customer Devices without Code Changes for First Level Evaluation
- Source Code to Minimize Porting Instruments into Customer's Test Environment for Detailed Evaluation and Deployment
- Focus on PA design/validation/test and production test including support for ET and DPD
- The bottom line…
 - Evaluate quicker, leverage Keysight's measurement knowledge, deploy with lower risk

Evaluation Software Environment

RF PA/FEM Characterization & Test Reference Solution ET/ DPD Evaluation Software Environment

RF PA/FEM Characterization & Test Reference Solution Optimized for insight – Code Example

- • • ×

Init

Local VSA

VSA/G DC/R	FE S Parameters LTE	s WLAN
📃 Enabl	e ET	
Use Use	DPD Wavefroms for All LT	TE Tests
N7614B DPD	/ET Settings	N7C14P Halo
Waveform/C	CFR/ET DPD	
-DPD Mo	del	_
🔽 Enab	le DPD	Waveform Length 0.5 🚖 ms
Model Ty	pe Look-up Table	→ Analysis Duration 200.0 → uS
Iterations	s 1 🚔	Analysis Delay 2.6 🤿 uS
LUT Pa	rameters	Memory/Voltera Parameters
LUT Siz	128 🌩	Model ID 👻
AM/AM	Polynomial 3 🚔	Memory Order 1
AM/PM	Polynomial 3 🚔	Nonlinear Order 5
		Cross Term Order 5
		Odd Orders Only
		eset To Open Data View Users

Extract LUT Values and Memory Model Polynomial Coefficients

FPGA Speed Enhancement Architecture

Some measurement speed improvements *

For ET/DPD capable UE 4G Power Amp

		Host PC Based			M9451A FPGA-base	<u>ed</u>
<u>Waveform</u>	Model Extract	<u>Model Apply</u>	Total Test Time	Model Extract	Model Apply	Total Test Time
5 MHz LTE	447.48 msec	45.78 ms	564.44 ms	4.04 ms	16.0 ms	69.52 ms
20 MHz LTE	1752.28 ms	169.92.5 ms	2101.14 ms	6.0 ms	63.0 ms	142.74 ms
						-

- M9037A embedded controller, M9381A VSG, M9393A VSA, H3353 AWG, M9451A FPGA
- 500 msec LTE waveform using ET and DPD
- Measurements made using power servo technique: Gain, PAE, ACPR, Delta EVM, 2nd through 6th harmonics
- All times averaged over 50 measurements

Summary of Key Points

Keysight's PXI Reference Solution for Power Amplifier Testing

- 1. Proven solution in DVT and manufacturing by top tier PA vendors.
- 2. Enables software reuse for <u>your</u> solution that reduces deployment effort, time and cost.
- 3. Provides support for emerging UE technologies including ET, DPD and uplink CA.
 - Market leading measurement precision and performance

Questions/Discussion

M9381A VSG

- Performance characteristics
- Frequency coverage from 1 MHz to 3 GHz or 6 GHz
- 10 µs switching speed with fast-tune, an exclusive baseband tuning technology innovation
- RF modulation bandwidth up to 160 MHz (± 0.3 to 0.5 dB flatness)
- ± 0.15 to 1.0 dB absolute amplitude accuracy
- Software Enhancements in 1.2 release:
- Shared Frequency Reference
- PXI backplane triggers
- New PLL Mode (Best Wide Offset) for WLAN EVM and GSM/EDGE ORFS optimization
- Improved sync out trigger for Envelope Tracking
- Software Enhancements in 1.3 release:
- Add Time Synchronous MIMO capability, channel-to-channel deviation <20 ns

Meet the M9393A PXIe Performance VSA The world's fastest, most accurate µW PXI VSA

- Leverages proven designs
 - Downconverter derived from PXA
 - FieldFox calibrator for excellent accuracy
 - M9391A PXI VSA digitizer & reference modules

- Deploys cutting-edge technology
 - Novel solid-state switches for speed & reliability Unique Keysight Labs production process to lower size & cost

Frequency range	9 kHz to 8.4/ 14/ 18/ 27 GHz
Analysis BW	40/100/160 MHz
Amplitude accy	+/15 dB
Tuning speed	150 us
Size	5 slots (4 + ref)

Keysight M9420A VXT Vector Transceiver Compress Time, Compress Test

And/or

Create custom PXI solution

Description	Performance	
Frequency range	60MHz to 3.8GHz or 6GHz	
Analysis bandwidth	40MHz, 80MHz or 160MHz	
Output Power	Standard: +10 dBm Optional: +18 dBm	
Memory depth	256 MSa or 512 Msa	
Slot Width	4-slots width (+ reference module)	
4 RF Ports	Tx, Rx, Full Duplex, Half Duplex	

HW Accelerated speed with high density & accuracy

- Combined VSG and VSA in single, 4-slot PXIe module
- FPGA-Accelerated speed with high density & accuracy
- Trusted X-Series software: industry tested algorithms, with code compatibility & bench top usability
- Ease evaluation and programming with ready-to-use IVI drivers, SCPI commands and integration with the Keysight PA Reference Solution

Create a flexible modular solution with one PXIe mainframe

Ready to Run for Single Antenna Test **Optional Full & Half Duplex Ports**

RF output port: Pure source output port provides highest output power level

RF Half Duplex port: Internally switched RF input or output port

RF Full Duplex port: Bi-directional communication

RF input port: Pure receiver input port provide best DANL performance.

Bi-directional & switched communication over single port connection.

Typical transceiver configuration

AOU-H3300/H3400 Series – Block Diagram

- F-Models (AOU-H3300F/H3400F) allow hardware implementation of custom FPGA algorithms
 - Output equalization / Digital pre-distortion
 - Custom filtering
 - Real-time waveform calculation/generation

RF PA/FEM Reference Solution

M9451A Measurement Acceleration Module

- Dedicated FPGA module
- Initial release of gateware supports ET/DPD measurement acceleration only
- Module can be added to Keysight VSA/G PXI system for PA test
- APIs provided for integration into the customer test environment
- Uses same Keysight DPD methods utilized in SystemVue and N7614B PA test software
- Gateware Release 1.1 (Aug 2015)
 - Minor update; add Memory Polynomial method support
- Gateware Release 1.2 (end 2015)
 - Enable customized DPD methods
- Release 2.0 open programming (2016)
 - Ability for users to develop and embed own IP into the FPGA

PXIe Vector Network Analyzer, M937XA

Driving down the size of test

- Full two-port network analyzer in just one slot
- Widest available frequency range:
 300 kHz to 4, 6.5, 9, 14, 20, 26.5 GHz
- Best PXI VNA performance in four key areas:
 - Speed: 18 msec across 401 points
 - Dynamic range: 114 dB (9 GHz), 110 dB (20 GHz)
 - Trace noise: < 0.003 dB specified,
 < 0.001 dB typical
 - Stability: ±0.005 dB/°C at 4 GHz, ±0.020 dB/°C at 26.5 GHz

M9195A Digital Stimulus Response (DSR) Product Overview – Key Features for DUT RFFE Control

Digital I/O

- 16 bidirectional channels
 - ✓ Programmable logic levels: -1.5V to +6.5V (±75mA)
 - ✓ 125M vectors/ch memory
 - ✓ Up to 250 MHz pattern rate (with RZ support)
 - ✓ I/O channels are also capable of PPMU and static digital
- 4 high voltage IO channels for flash memory programming
- 4 open drain ports for fixture control

Vector Timing

- Independent channels: per channel & per clock cycle IO control, per vector timing, per period timing, on-the-fly modification
- <u>1 nsec</u>edge placement resolution for per period vector control
- Per channel programmable stimulus/response compensation delay: up to 250ns with 50ps resolution
- STIL programming support

ET Standards & Industry Groups

MIPI eTrak mipi alliance

- Specification for an analog interface between BBIC/RF IC and envelope tracking power supply (ETPS)
- Keysight (Agilent) is MIPI member, and a contributor to the group

- Advocates the benefits of ET
- Standardize interface and system specifications

