
-9

PXI and PXI Express
Trigger Management

Specification
PCI eXtensions for Instrumentation

PCI EXPRESS eXtensions for Instrumentation

PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

Revision 1.1
May 31, 2018

IMPORTANT INFORMATION

Copyright
© Copyright 2012–2018 PXI Systems Alliance. All rights reserved.

This document is copyrighted by the PXI Systems Alliance. Permission is granted to reproduce and distribute this
document in its entirety and without modification.

NOTICE
The PXI and PXI Express Trigger Management Specification is authored and copyrighted by the PXI Systems
Alliance. The intent of the PXI Systems Alliance is for the PXI and PXI Express Trigger Management Specification
to be an open industry standard supported by a wide variety of vendors and products. Vendors and users who are
interested in developing PXI-compatible products or services, as well as parties who are interested in working with the
PXI Systems Alliance to further promote PXI as an open industry standard, are invited to contact the PXI Systems
Alliance for further information.

The PXI Systems Alliance wants to receive your comments on this specification. Visit the PXI Systems Alliance web
site at http://www.pxisa.org/ for contact information and to learn more about the PXI Systems Alliance.

The attention of adopters is directed to the possibility that compliance with or adoption of the PXI Systems Alliance
specifications may require use of an invention covered by patent rights. The PXI Systems Alliance shall not be
responsible for identifying patents for which a license may be required by any PXI Systems Alliance specification, or
for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. PXI
Systems Alliance specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

The information contained in this document is subject to change without notice. The material in this document details
a PXI Systems Alliance specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company’s products.

The PXI Systems Alliance makes no warranty of any kind with regard to this material, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. The PXI Systems Alliance shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Compliance with this specification does not absolve manufacturers of PXI equipment from the requirements of safety
and regulatory agencies (UL, CSA, FCC, IEC, etc.).

Trademarks
PXI™ is a trademark of the PXI Systems Alliance.

PICMG™ and CompactPCI® are trademarks of the PCI Industrial Computation Manufacturers Group.

Product and company names are trademarks or trade names of their respective companies.
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 ii www.pxisa.org

PXI and PXI Express Trigger Management Specification
Revision History
This section is an overview of the revision history of the PXI and PXI Express Trigger Management Specification.

Revision 1.0, October 18, 2012
This is the first public revision of the PXI and PXI Express Trigger Management Specification.

Revision 1.1, May 31, 2018
Added text regarding coordination of multivendor static trigger management.

Clarified some error handling language.

Updated text regarding versioning of Trigger Managers in the Services Tree.

Added support for the Linux operating system.
© PXI Systems Alliance iii PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

This Page Intentionally Left Blank

Contents

1. Introduction

1.1 Objectives.. 1
1.2 Intended Audience and Scope... 2
1.3 Background and Terminology... 2
1.4 Applicable Documents .. 3

2. PXI Trigger Management Software Services
2.1 Overview ... 5
2.2 PXI Trigger Manager .. 5

2.2.1 Theory of Operations .. 5
2.2.2 PXISA_ChassisTrig_OpenChassis ... 6
2.2.3 PXISA_ChassisTrig_CloseChassis ... 8
2.2.4 PXISA_ChassisTrig_SetReservation .. 8
2.2.5 PXISA_ChassisTrig_SetReservationMultiple .. 10
2.2.6 PXISA_ChassisTrig_SetRoute.. 11
2.2.7 PXISA_ChassisTrig_ClearRoute .. 12
2.2.8 PXISA_ChassisTrig_GetLineInformation .. 12
2.2.9 PXISA_ChassisTrig_ClearAllRoutesAndReservations.. 13

2.3 Backward Compatibility ... 14
2.4 Status Codes .. 14
2.5 Registration of Trigger Managers ... 15

2.5.1 Trigger Manager Services Tree... 15

3. Software Frameworks and Requirements
3.1 Overview ... 19
3.2 32-bit Windows System Framework... 19

3.2.1 Introduction ... 19
3.2.2 Trigger Manager Software Bindings... 19
3.2.3 Services Tree Implementation... 20

3.3 32-Bit Linux System Framework.. 20
3.3.1 Introduction ... 20
3.3.2 Trigger Manager Software Bindings... 20
3.3.3 Service Tree Implementation .. 20
3.3.4 Security of PXI Files and Interfaces ... 21

3.4 64-Bit Windows System Framework .. 21
3.4.1 Introduction ... 21
3.4.2 Trigger Manager Software Bindings... 21
3.4.3 Services Tree Implementation... 22

3.5 64-Bit Linux System Framework.. 22
3.5.1 Introduction ... 22
3.5.2 Trigger Manager Software Bindings... 22
3.5.3 Service Tree Implementation .. 23
3.5.4 Security of PXI Files and Interfaces ... 23

Appendix A: Trigger Manager API Example Code
Setting and Clearing a Reservation ... 25
Reserving Multiple Lines Simultaneously .. 25
Setting a Route .. 26
Clearing a Route.. 27
Printing Line State... 27
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 v www.pxisa.org

Contents
Appendix B: 32-Bit and 64-Bit Windows System Framework Files and Client Example
PXITriggerManager.h ... 29
PXITriggerManager.def .. 32
Client Example.. 32
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 vi www.pxisa.org

1. Introduction

This section explains the objectives and scope of the PXI and PXI Express Trigger Management
Specification. It also describes the intended audience and lists relevant terminology and documents. Note that
this specification is intended to supplement the PXI Software Specification and PXI Express Software
Specification. Refer to the PXI Software Specification and PXI Express Software Specification for software
information not directly related to the PXI Trigger Manager.

1.1 Objectives
The PXI and PXI Express Trigger Management Specification provides a standard for the management of
trigger bus resources described in the PXI Hardware Specification and PXI Express Hardware Specification.

There are five major objectives for the PXI and PXI Express Trigger Management Specification.

The first objective is to define software interfaces for the reservation of trigger bus resources. PXI-1: PXI
Hardware Specification and PXI-5: PXI Express Hardware Specification describe the PXI trigger bus for
intermodule synchronization and communication.The trigger bus can be driven by multiple peripherals
simultaneously, but doing so can result in hardware damage. To prevent such double driving, the PXI and PXI
Express Trigger Management Specification defines a software interface through which clients can reserve
these lines to be used. Responsibility is with clients to reserve these trigger lines before using them.
Conformance to this requirement guarantees that a single trigger line cannot be driven by multiple clients
simultaneously. The interfaces defined in PXI-9: PXI and PXI Express Trigger Management Specification
work in concert with mechanisms described in PXI-2: PXI Software Specification and PXI-6: PXI Express
Software Specification, and clients of the Trigger Manager API will need to be familiar with those
specifications.

The second objective is to define software interfaces for the routing of signals across a trigger bus bridge. The
PXI Hardware Specification allows for chassis with multiple trigger bus segments, and some such chassis are
designed with a trigger bus bridge to allow the transmission of signals between trigger bus lines. The
interfaces defined in PXI-9: PXI and PXI Express Trigger Management Specification allow client software
to operate these trigger bridges without using vendor-specific interfaces. These interfaces work in concert
with mechanisms described in PXI-2: PXI Software Specification and PXI-6: PXI Express Software
Specification, and clients of the Trigger Manager API will need to be familiar with those specifications.

The third objective is compatibility with previous PXI hardware and PXI software specifications. The PXI
and PXI Express Trigger Management Specification imposes no new requirements on PXI and PXI Express
hardware. The software interface described allows for the use of hardware capabilities that may or may not
exist in a particular PXI or PXI Express chassis, but hardware that does not support these capabilities remains
in full compliance with this specification. Additionally, like previous software specifications, the PXI and PXI
Express Trigger Management Specification can be implemented independently of any additional software
such as instrument drivers.

The fourth objective is to provide a standardized mechanism for the implementation of trigger routing and
reservation APIs predating this specification. Interfaces defined in the VISA specifications by the IVI
Foundation provide mechanisms to access trigger resources in PXI and PXI Express chassis. This
specification aims to allow these interfaces to be implemented in a way that functions across multiple vendors
seamlessly.

The fifth objective is to define standard operating system frameworks. This includes support of standard
operating systems such as Microsoft Windows.
© PXI Systems Alliance 1 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

1. Introduction
1.2 Intended Audience and Scope
This specification is primarily intended for product developers interested in implementing and leveraging
trigger management features of the PXI and PXI Express platforms. Software developers and systems
integrators should take advantage of these software interfaces to manage PXI and PXI Express trigger
resources. Additionally, product developers and systems integrators should reference the operating system
framework definitions to ensure system-level interoperability. Note that the definitions and interfaces
described in this document apply to both PXI and PXI Express hardware components.

1.3 Background and Terminology
This section defines the acronyms and key words referred to throughout this specification. This specification
uses the following acronyms:

• API—Application Programming Interface

• PCI—Peripheral Component Interconnect; electrical specification defined by PCISIG

• PCISIG—PCI Special Interest Group

• PXI—PCI eXtensions for Instrumentation

• VISA—IVI specifications VPP-4.3 and related

This specification uses several key words, which are defined as follows:

RULE: Rules SHALL be followed to ensure compatibility. A rule is characterized by the use of the words
SHALL and SHALL NOT.

RECOMMENDATION: Recommendations consist of advice to implementers that will affect the usability
of the final module. A recommendation is characterized by the use of the words SHOULD and SHOULD
NOT.

PERMISSION: Permissions clarify the areas of the specification that are not specifically prohibited.
Permissions reassure the reader that a certain approach is acceptable and will cause no problems. A
permission is characterized by the use of the word MAY.

OBSERVATION: Observations spell out implications of rules and bring attention to things that might
otherwise be overlooked. They also give the rationale behind certain rules, so that the reader understands why
the rule must be followed.

MAY: A key word indicating flexibility of choice with no implied preference. This word is usually associated
with a permission.

SHALL: A key word indicating a mandatory requirement. Designers SHALL implement such mandatory
requirements to ensure interchangeability and to claim conformance with the specification. This word is
usually associated with a rule.

SHOULD: A key word indicating flexibility of choice with a strongly preferred implementation. This word
is usually associated with a recommendation.
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 2 www.pxisa.org

1. Introduction
1.4 Applicable Documents
This specification defines extensions to the base PXI and PXI Express specifications referenced in this
section. It is assumed that the reader has a thorough understanding of PXI and PXI Express. The PXI and
PXI Express specifications refer to several other applicable documents with which the reader may want to
become familiar. This specification refers to the following documents directly:

• PXI-1: PXI Hardware Specification

• PXI-2: PXI Software Specification

• PXI-5: PXI Express Hardware Specification

• PXI-6: PXI Express Software Specification
© PXI Systems Alliance 3 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

This Page Intentionally Left Blank

2. PXI Trigger Management Software
Services

This section defines the PXI and PXI Express Software Services for Trigger Management, their APIs, their
registration, and how they interact with clients of PXI and PXI Express Trigger Resources.

2.1 Overview
This section defines the Trigger Manager service that shall be provided for each chassis. It further defines how
this service should be registered and how clients in the system use it.

The APIs and databases defined in this section are described in a platform-independent manner. The
platform-specific details of this specification are found in Section 3, Software Frameworks and
Requirements.

2.2 PXI Trigger Manager
A PXI Trigger Manager is responsible for:

• Providing reservation functionality for each trigger bus line in the chassis for which it is registered.

• Providing routing functionality between trigger bus lines, where such routing functionality is supported
by chassis hardware.

• Enforcing the specific routing capabilities of a chassis by returning well-defined error codes when
unsupported or invalid requests are made.

• Facilitating the guarantee of exclusive access to drive each individual trigger for a single client at any
point in time.

2.2.1 Theory of Operations
Exclusive access to trigger lines is accomplished through a cooperative interaction with all clients. A client
may open one or more sessions on a particular Trigger Manager for a particular chassis. Each session is
associated with a label the client provides when the session is opened, and all operations performed with that
session are bound to, or “owned” by, that label. Clients must then be implemented to reserve a line with the
appropriate Trigger Manager before using hardware to drive a signal on that line. A Trigger Manager relies
on adherence to this policy to prevent one client from inadvertently interfering with another client’s exclusive
use of a particular line.

Once a client has reserved a particular line, that client may use the associated Trigger Manager to route a
signal to that line from another trigger line if such functionality is supported by the hardware. Because this
process involves driving a signal to the destination line, the client must have a reservation for that line before
the Trigger Manager allows the route, and that reservation must be maintained until the route is cleared. In
this case, the client is expected not to configure hardware to drive the destination line directly, because this
would potentially conflict with the signal being driven by the trigger bridge, resulting in hardware damage.

A client determines the appropriate Trigger Manager for a chassis by accessing a key in the services tree, as
directed by information in the system description files. The client can then open one or more sessions to one
or more chassis, manipulating reservations and routes as necessary. For an example detailing this algorithm,
refer to Appendix B: 32-Bit and 64-Bit Windows System Framework Files.

A PXI Trigger Manager must implement the operations listed in this section to the extent that the relevant
chassis supports them. The operations are specified here by their names, return values, input parameters, and
output parameters. Output parameters are differentiated by an asterisk in the parameter list. Although this
corresponds roughly to the C language notation for passing a pointer, it does not necessarily indicate that a
© PXI Systems Alliance 5 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

2. PXI Trigger Management Software Services
pointer is used in the implementation. Arrays are differentiated by brackets and an ellipsis ([...]) after the
parameter name.

RULE: A Trigger Manager SHALL implement all operations described in this section.

PERMISSION: A Trigger Manager implementation MAY return kPXISA_ErrorUnsupported in response
to PXISA_ChassisTrig_SetRoute and PXISA_ChassisTrig_ClearRoute operations if the chassis
hardware does not support routing.

RULE: When returning a negative error code as its status, a method of a Trigger Manager SHALL NOT make
any change to routes or reservations configured in the system.

RULE: When returning a positive warning code or 0 as its status, a method of a Trigger Manager SHALL
successfully perform the operation requested by the caller.

RULE: The installation software for a PXI or PXI Express chassis SHALL include a Trigger Manager
implementation that supports the chassis.

OBSERVATION: Because a single Trigger Manager can be designated for multiple chassis as described in
section 2.5, a vendor can satisfy the above rule for any number of chassis by creating only one Trigger
Manager.

OBSERVATION: A client of the Trigger Manager must treat output parameters of a Trigger Manager
operation as undefined if the operation returns an error status code, unless otherwise specified.

2.2.2 PXISA_ChassisTrig_OpenChassis
Allows a particular client to open a session to a chassis to be used in subsequent calls to other methods on the
trigger manager. Ownership is established for the session such that all operations made with that session have
the same owner as the session used to perform them.

Status PXISA_ChassisTrig_OpenChassis(Integer chassisNum, String clientLabel,

Session * session)

chassisNum: The chassis number of the chassis to open from the System Description File.

clientLabel: A label identifying the client that owns this session.

session (out): A session identifier to be used in subsequent calls.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter in response to a call to
PXISA_ChassisTrig_OpenChassis if the clientLabel is something other than a string of nonzero
length.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter in response to a call to
PXISA_ChassisTrig_OpenChassis if chassisNum is not a valid chassis number from the PXI or PXI
Express System Description File.

RULE: If a Trigger Manager contains a cache of the chassis numbers and/or the physical chassis hardware
they represent, the Trigger Manager SHALL ensure that the cache is up to date when
PXISA_ChassisTrig_OpenChassis is invoked.

RULE: A Trigger Manager SHALL allow multiple sessions to be opened simultaneously regardless of client
label.

RULE: A Trigger Manager SHALL allow multiple sessions to be opened simultaneously to the same physical
chassis.
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 6 www.pxisa.org

2. PXI Trigger Management Software Services
RULE: A Trigger Manager SHALL prevent a session opened with a given client label from modifying
configuration changes made by any session opened with a different client label.

RULE: A Trigger Manager SHALL NOT enforce any distinction in ownership between the configuration
changes made by one session and the configuration changes made by a different session where both sessions
were opened with the same client label.

OBSERVATION: A session returned from PXISA_ChassisTrig_OpenChassis is intended to be opaque
to clients. Clients should not assume that sessions can be meaningfully used in numeric comparisons or other
operations outside of the Trigger Manager.

RULE: All routes and reservations made with the session returned by PXISA_ChassisTrig_OpenChassis
SHALL be “owned” by every client that passed an identical clientLabel to
PXISA_ChassisTrig_OpenChassis.

OBSERVATION: The client label establishes a basis for ownership of routes and reservations by a particular
client. The level of granularity enforced here is up to the client; different instances of the same client may use
unique client labels, or they may use the same client label if the author of the application desires that all
instances be treated as a single entity. In any case, the intention is that no caller may modify the configuration
changes made by another caller unless the same client label has been used by both callers.

OBSERVATION: A client of the Trigger Manager API can prevent its client label from being confused with
the client label of any other client by using a Globally Unique Identifier (GUID) as all or part of its client label.

OBSERVATION: The clientLabel string provided by the client can aid the user in determining the source of
reservations and routes. It is thus to the user’s advantage for clients to choose a descriptive clientLabel. For
instance, including the reserving software’s vendor’s name in the client label may be helpful to the user.

OBSERVATION: PXISA_ChassisTrig_OpenChassis can be used to perform any initialization
functionality necessary for the internal workings of a Trigger Manager.

RULE: A Trigger Manager SHALL NOT reassign reservations or routes created on one physical chassis to
another physical chassis as a result of configuration changes in the system.

PERMISSION: A Trigger Manager MAY maintain reservations and routes for a physical chassis over a
configuration change that does not change the chassis’s hardware or physical identity, such as a simple
renumbering of a chassis.

OBSERVATION: Because the chassis number is used only in the PXISA_ChassisTrig_OpenChassis
function, it is possible to create a Trigger Manager implementation in which routes and reservations can be
maintained on a particular physical chassis even when the chassis number of that physical chassis changes
one or more times. It is also possible to maintain validity of sessions open to such a chassis regardless of
changes to the chassis number.

PERMISSION: A Trigger Manager MAY clear all routes and reservations for a chassis whose chassis
number has changed.

RULE: A Trigger Manager that implements the above permission SHALL treat as disconnected all open
sessions referring to a chassis whose chassis number has changed.

RULE: A Trigger Manager SHALL treat as disconnected all open sessions referring to chassis that are no
longer present.

RULE: A Trigger Manager SHALL return PXISA_ErrorDisconnected when a client attempts to use a
disconnected session.
© PXI Systems Alliance 7 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

2. PXI Trigger Management Software Services
RULE: A Trigger Manager SHALL NOT reuse any disconnected session handles until those sessions are
explicitly closed by the client.

OBSERVATION: A client is still required to close disconnected sessions, in order to allow the Trigger
Manager to free resources associated with the session.

2.2.3 PXISA_ChassisTrig_CloseChassis
Closes a previously active session.

PXISA_ChassisTrig_CloseChassis(Session session)

session: The session to close.

RULE: A call to PXISA_ChassisTrig_CloseChassis SHALL NOT make any modifications to routes or
reservations configured in the system.

OBSERVATION: The above rule is intended to enforce the maintenance of routes and reservations between
sessions. This allows a client application to create routes and reservations and be guaranteed that they will be
enforced until the system is rebooted or they are intentionally cleared.

OBSERVATION: PXISA_ChassisTrig_CloseChassis has no return value because there is no
reasonable action to take on failure. It should always succeed.

OBSERVATION: PXISA_ChassisTrig_CloseChassis can be used to perform any clean-up operations
associated with the internal implementation of a trigger manager.

OBSERVATION: Failure to close a trigger manager session may result in memory or other resource leaks.

OBSERVATION: PXISA_ChassisTrig_CloseChassis has no return type.

2.2.4 PXISA_ChassisTrig_SetReservation
Changes the reservation state of a line.

Status PXISA_ChassisTrig_SetReservation(Session session, Integer bus, Integer

line, Integer reserve)

session: The session that identifies the chassis and client for which the reservation state
should be modified.

bus: The number of the trigger bus for which the reservation state should be modified.

line: The 0-indexed line for which the reservation state should be modified.

reserve: The desired reservation state, from the following table.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_SetReservation passes a bus number that is not a valid trigger bus number from
the system description file.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_SetReservation passes an invalid line number as the line parameter.

reserve Value Definition

0 Clear the line’s reservation.

1 Reserve the line.
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 8 www.pxisa.org

2. PXI Trigger Management Software Services
RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidClient in response to a call to
PXISA_ChassisTrig_SetReservation if the provided bus and line correspond to a line reserved by a
client other than the owner of the session requesting the change.

RULE: A Trigger Manager SHALL return kPXISA_ErrorConflictingRoute if a call to
PXISA_ChassisTrig_SetReservation attempts to clear the reservation of a line reserved by the same
client making the request, but which is also the destination of a route.

OBSERVATION: A client must clear a route before clearing any reservation that was required to set that
route.

RULE: A Trigger Manager SHALL return kPXISA_ErrorLineAlreadyReserved if a call to
PXISA_ChassisTrig_SetReservation attempts to reserve a line that is already reserved by the client
making the request.

RULE: A Trigger Manager SHALL return kPXISA_ErrorLineNotReserved if a call to
PXISA_ChassisTrig_SetReservation attempts to clear the reservation of a line that is not reserved.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_SetReservation passes as the reserve value anything other than the values listed
in the table above.

RULE: A Trigger Manager SHALL maintain the reservation of lines reserved with
PXISA_ChassisTrig_SetReservation or PXISA_ChassisTrig_SetReservationMultiple in its
internal state until they are cleared by a call to PXISA_ChassisTrig_SetReservation with a session
having the appropriate client label, or until the system is rebooted.

RULE: A Trigger Manager SHALL NOT maintain the reservation of lines reserved with
PXISA_ChassisTrig_SetReservation across system reboots.

OBSERVATION: PXI trigger lines are a limited resource in the chassis. Each client is expected to unreserve
lines that are no longer required in order to prevent unnecessary consumption of trigger lines.

In accordance with the previous OBSERVATION, it should typically be the case that an application that will
use trigger lines will set the required reservations, execute the application logic that requires those
reservations, and then clear the reservations when they are no longer needed. However, a vendor may choose
to provide a tool that creates reservations that are persisted indefinitely, including across reboots, until a user
has explicitly cleared them. These are known as Static Reservations.

OBSERVATION: A tool providing static reservations must re-apply its settings to Trigger Manager(s) when
the system boots.

RECOMMENDATION: A tool implementing static reservations SHOULD NOT obtain a reservation at
boot that it did not already hold during the previous system shutdown.

OBSERVATION: If multiple static reservation tools are provided by multiple vendors, collisions can occur
if those tools attempt at boot to reserve overlapping sets of trigger lines. If all such tools adhere to the above
RECOMMENDATION, conflicts between them will never occur.

OBSERVATION: There is no guarantee that a tool providing static reservations will not collide with another
application which requests conflicting non-static reservations upon its execution. Such an application may be
manually launched by the user shortly after boot, or configured to start automatically. To avoid this, a tool
providing static reservations should be designed to perform its startup reservation requests as early as possible
at system boot.
© PXI Systems Alliance 9 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

2. PXI Trigger Management Software Services
2.2.5 PXISA_ChassisTrig_SetReservationMultiple

Changes the reservation state of multiple lines simultaneously. The index of failure parameter is optional,
because the client may not need this information.

Status PXISA_ChassisTrig_SetReservationMultiple(Session session, Integer

numElements, Integer buses [...], Integer lines [...], Integer * indexOfFailure)

session: The session that identifies the chassis and client for which the reservation state
should be modified.

numElements: The number of bus/line pairs for which to change the reservation state.

buses [...]: An array of numElements trigger bus numbers on which to reserve lines. The
nth element of buses and nth element of lines together make a single
reservation request.

lines [...]: An array of numElements 0-indexed lines on buses. The nth element of buses
and nth element of lines together make a single reservation request.

indexOfFailure (opt,out): The 0-based index of the value in each of buses and lines for which the
reservation could not be changed, if an error was returned.

RULE: A Trigger Manager SHALL execute a call to PXISA_ChassisTrig_SetReservationMultiple
by considering each bus/line pair expressed in the buses parameter and the lines parameter as a single
reservation to be set.

RULE: A Trigger Manager SHALL execute a call to PXISA_ChassisTrig_SetReservationMultiple
atomically with respect to other requests for reservations.

RULE: A Trigger Manager SHALL return errors on a call to
PXISA_ChassisTrig_SetReservationMultiple in a manner identical to that described for
PXISA_ChassisTrig_SetReservation in section 2.2.8, applying all rules to each individual reservation
to be set.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_SetReservationMultiple provides a negative value for the numElements
parameter.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_SetReservationMultiple lists the same bus/line pair twice.

RULE: A Trigger Manager SHALL maintain the reservation of lines reserved with
PXISA_ChassisTrig_SetReservationMultiple according to the rules described for
PXISA_ChassisTrig_SetReservation above.

RULE: If the operation requested in a call to PXISA_ChassisTrig_SetReservationMultiple produces
an error for any of the bus/line pairs provided, the Trigger Manager SHALL NOT alter the state of the system.

RULE: If the operation requested in a call to PXISA_ChassisTrig_SetReservationMultiple
completes successfully, the Trigger Manager SHALL return –1 in the indexOfFailure parameter.

RULE: If the operation requested in a call to PXISA_ChassisTrig_SetReservationMultiple produces
an error for any of the bus/line pairs provided, the Trigger Manager SHALL return the index of a bus/line pair
that caused the error in the indexOfFailure parameter.
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 10 www.pxisa.org

2. PXI Trigger Management Software Services
OBSERVATION: The indexOfFailure parameter informs the caller of only a single error that occurred.
It is possible that multiple bus/line pairs in the provided lists cannot be reserved, but the client must make
multiple requests to run into these problems and understand their reasons.

OBSERVATION: Because other clients may be actively changing the reservation state of the lines, it is
possible that a reservation that fails in one call will succeed in another call a few moments later, or that a
reservation that succeeds in one call will fail in another call a few moments later.

OBSERVATION: Clients that encounter failures using
PXISA_ChassisTrig_SetReservationMultiple due to trigger bus resource conflicts with other clients
can combine the information provided by the indexOfFailure parameter with the description of the chassis
trigger resources in the system description file to resolve the conflicts. If a conflict is encountered, an
application can iteratively attempt the reservation of acceptable resource combinations until it finds a
combination that is available.

OBSERVATION: Race conditions can occur between multiple clients trying to reserve sets of lines when
those reservations are performed separately. When a related set of lines is required, for example, to route a
signal across multiple segments of a chassis, a client can eliminate a class of race conditions by requesting
reservations simultaneously using PXISA_ChassisTrig_SetReservationMultiple.

OBSERVATION: A tool reapplying multiple static reservations at boot can do so more efficiently with
PXISA_ChassisTrig_SetReservationMultiple than by multiple calls to
PXISA_ChassisTrig_SetReservation.

2.2.6 PXISA_ChassisTrig_SetRoute
Provides a mechanism to set a route across a trigger bridge on a chassis backplane. Because the existence of
a route requires the use of the destination trigger line, the client is responsible for reserving that line prior to
making this call.

Status PXISA_ChassisTrig_SetRoute(Session session, Integer sourceBus, Integer

sourceLine, Integer destBus, Integer destLine)

session: The session that identifies the chassis and client for which the route is made.

sourceBus: The number of the trigger bus that is the source of the signal to be routed.

sourceLine: The 0-indexed line that is the source of the signal to be routed.

destBus: The number of the trigger bus that is the destination of the signal to be routed.

destLine: The 0-indexed line that is the destination of the signal to be routed.

RULE: A Trigger Manager SHALL return kPXISA_ErrorUnsupported if a call to
PXISA_ChassisTrig_SetRoute requests a route that the hardware is not physically capable of making.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_SetRoute passes as sourceBus or destBus a number that is not a valid trigger bus
number from the system description file.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_SetRoute passes an invalid line number as the sourceLine or destLine
parameter.

RULE: A Trigger Manager SHALL require that a trigger line be reserved by the client prior to being used as
a destination line in a call to PXISA_ChassisTrig_SetRoute. If the line is already reserved by a client
other than the client calling PXISA_ChassisTrig_SetRoute, or if the line is not reserved by any client, a
Trigger Manager SHALL return kPXISA_ErrorLineNotReserved.
© PXI Systems Alliance 11 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

2. PXI Trigger Management Software Services
RULE: A Trigger Manager SHALL return kPXISA_ErrorConflictingRoute if a call to
PXISA_ChassisTrig_SetRoute specifies a destination bus and line that are already the destination of a
route made previously by the same client.

RULE: A Trigger Manager SHALL maintain routes set with PXISA_ChassisTrig_SetRoute in the
hardware state until they are cleared by a call to PXISA_ChassisTrig_ClearRoute or
PXISA_ChassisTrig_ClearAllRoutesAndReservations with a session having the appropriate client
label, or until the system is rebooted.

RULE: A Trigger Manager SHALL NOT maintain routes set with PXISA_ChassisTrig_SetRoute across
system reboots.

OBSERVATION: The destination line of a route must be reserved by the caller to guarantee that the
destination is not also driven by a device controlled by another client.

OBSERVATION: Setting a route has no impact or requirement on the reservation of the source bus and
source line.

A vendor may choose to provide a tool which creates routes that are persisted indefinitely, including across
reboots, until a user has explicitly cleared them. These are known as Static Routes.

OBSERVATION: A static route will always require a corresponding static reservation of its destination bus.

OBSERVATION: All OBSERVATIONS and RECOMMENDATIONS pertaining to static reservations in
section 2.2.4 also apply to static routes.

2.2.7 PXISA_ChassisTrig_ClearRoute
Clears a route previously set by the client.

Status PXISA_ChassisTrig_ClearRoute(Session session, Integer destBus, Integer

destLine)

session: The session that identifies the chassis and client for which the route will be
cleared.

destBus: The number of the trigger bus that is the destination of the route to be cleared.

destLine: The 0-indexed line that is the destination of the route to be cleared.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter in response to a call to
PXISA_ChassisTrig_ClearRoute if the provided destination bus and line do not correspond to a route
previously set by a call to PXISA_ChassisTrig_SetRoute.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidClient in response to a call to
PXISA_ChassisTrig_ClearRoute if the provided destination bus and line corresponds to a route owned
by a client other than the owner of session.

OBSERVATION: Clearing a route has no impact on the reservation of the destination line. If a client is
finished with the line, it is expected to clear the reservation with a separate call to
PXISA_ChassisTrig_SetReservation.

2.2.8 PXISA_ChassisTrig_GetLineInformation
Provides a mechanism for a caller to obtain the reservation, routing, and ownership state of a given line. All
output parameters except the reservation state are optional, in case the client does not need that information.

Status PXISA_ChassisTrig_GetLineInformation(Session session, Integer bus, Integer

line, Integer * reserve, Integer * routeSrcBus, Integer * routeSrcLine, String *

clientLabel)
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 12 www.pxisa.org

2. PXI Trigger Management Software Services
session: The session that identifies the chassis and client for which to retrieve information.

bus: The number of the trigger bus for which the state should be returned.

line: The 0-indexed line for which the state should be returned.

reservation (out): The current line reservation state, from the following table.

routeSrcBus (opt,out): The source bus for the route, if the line is routed.

routeSrcLine (opt,out): The source line for the route, if the line is routed.

owner (opt,out): The client label for the owner of the reservation, if the line is reserved.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_GetLineInformation passes a bus number that is not a valid trigger bus number
from the system description file.

RULE: A Trigger Manager SHALL return kPXISA_ErrorInvalidParameter if a call to
PXISA_ChassisTrig_GetLineInformation passes an invalid line number as the line parameter.

RULE: A Trigger Manager SHALL provide one of the values from the table above for the reserve parameter.

OBSERVATION: It is possible for a caller to use PXISA_ChassisTrig_GetLineInformation to query
the owning client for a particular route or reservation, then open a new session to impersonate that client and
modify the route or reservation.

OBSERVATION: If the reservation value returned indicates the line is not reserved, the owner parameter is
undefined, and the caller should not access it.

2.2.9 PXISA_ChassisTrig_ClearAllRoutesAndReservations
Provides the capability to clear all routes and reservations for a particular client on a given chassis.

Status PXISA_ChassisTrig_ClearAllRoutesAndReservations(Session session)

session: The session that identifies the chassis and client for which to clear all
configuration.

RULE: A Trigger Manager SHALL clear all the routes and reservation for the chassis and client associated
with the specified session when PXISA_ChassisTrig_ClearAllRoutesAndReservations is called.

RULE: A Trigger Manager SHALL NOT, as a result of a call to
PXISA_ChassisTrig_ClearAllRoutesAndReservations, modify reservations or routes for chassis
other than the chassis associated with the provided session.

RULE: A Trigger Manager SHALL NOT, as a result of a call to
PXISA_ChassisTrig_ClearAllRoutesAndReservations, modify reservations or routes owned by
clients other than the client associated with the provided session.

reservation Value Definition

0 The line is not reserved.

1 The line is reserved, and is not
the destination of a route.

2 The line is reserved, and is the
destination of a route.
© PXI Systems Alliance 13 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

2. PXI Trigger Management Software Services
2.3 Backward Compatibility
Software interfaces specified by the IVI Foundation which predate this specification allow for the reservation
of trigger lines. One aim of this specification is to allow the implementation of these interfaces such that they
continue to operate on PXI and PXI Express chassis for which there is no Trigger Manager implementation.
This is necessary to allow vendors to abandon vendor-specific mechanisms but still have full backward
compatibility for these chassis.

RULE: A Trigger Manager implementation designated as a vendor default as described in Section 2.5.1,
Trigger Manager Services Tree, SHALL be capable of supporting reservation requests for any PXI or
PXI Express chassis defined in the system description file(s).

OBSERVATION: All chassis information necessary to fulfill the above rule is available in the system
description files.

2.4 Status Codes
Many of the methods defined for the Trigger Manager API require the definition of specific status codes.

RULE: All status codes returned by a Trigger Manager between negative 1000 and positive 1000 SHALL be
reserved for use by PXISA.

RULE: A status code of zero (0) SHALL be used to represent a successful operation.

RULE: A negative status code SHALL be used to represent a failure. The status code negative one (–1) is
reserved by this specification to represent a generic failure.

PERMISSION: A Trigger Manager may return other values to indicate a specific type of failure, as long as
those values are less than negative 1000.

RULE: A positive status code SHALL be used to represent a warning. The status code positive one (1) is
reserved by this specification to represent a generic warning.

PERMISSION: A Trigger Manager may return other values to indicate a specific type of warning, as long
as those values are more than positive 1000.

RULE: A Trigger Manager SHALL return the status codes in the table below in circumstances described in
the Definition column.

Mnemonic Status Value Definition

kPXISA_Warning 1 Generic warning.

kPXISA_Success 0 Success.

kPXISA_Error –1 Generic error.

kPXISA_ErrorUnsupported –2 The hardware does not support the
requested operation.

kPXISA_ErrorInvalidParameter –3 An input parameter was invalid.

kPXISA_ErrorLineNotReserved –4 An attempt was made to route to a
line the calling client has not
reserved.

An attempt was made to unreserve
a line that was not reserved.
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 14 www.pxisa.org

2. PXI Trigger Management Software Services
2.5 Registration of Trigger Managers
The Trigger Managers are invoked by clients and specified to clients by the Resource Manager. The clients
and Resource Manager need a central registry where they can find information about how to invoke the
Trigger Manager. This central registry shall be the Services Tree, as defined in the PXI Express Software
Specification. This subsection describes additions to the Services Tree required for the registration of Trigger
Managers.

RULE: Trigger Managers SHALL include an installer that places references to the Trigger Manager in the
Services Tree, as described in this section.

2.5.1 Trigger Manager Services Tree
The Services Tree is a hierarchical database of the services available in a PXI or PXI Express system. Each
element in the Services Tree is either a key or an attribute.

Each key has:

• One name.

• One parent key (exception: the root key has no parent).

• Zero or more child keys.

• Zero or more attributes.

Each attribute has:

• One name.

• One type, which is either Integer or String.

• One value.

The root of the Services Tree is named Services.

kPXISA_ErrorLineAlreadyReserved –5 An attempt was made to reserve a
line already reserved by this client.
Note that this status code will NOT
be used if a different client already
reserved the line. Refer to
kPXISA_ErrorInvalidClient
below.

kPXISA_ErrorConflictingRoute –6 An attempt was made to route to a
line that is already the destination
of another route by this client, or to
unreserve a line that is the
destination of a route by this client.

kPXISA_ErrorInvalidClient –7 A route or reservation was
attempted that would require
another client’s route or reservation
to be changed.

kPXISA_ErrorDisconnected –8 The client attempted to use a
session for which the chassis is
disconnected.

Mnemonic Status Value Definition
© PXI Systems Alliance 15 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

2. PXI Trigger Management Software Services
The child keys of the root key are called category keys. A category key called Trigger Managers is required
to allow registration of Trigger Managers.

The child keys of the category keys are called vendor keys. The vendor keys under the Trigger Managers
category key and their descendants are created by the installation software for the Trigger Managers. The
name of a vendor key is a unique string identifying the vendor of the Trigger Manager being installed.

RULE: A vendor key must match the Vendor field from the chassis description file, for the chassis vendor
that it represents.

RULE: The string None SHALL NOT be used for the name of a vendor key.

The child keys of the vendor keys are called model keys. The name of a model key is also the model name of
a chassis for which the designated Trigger Manager should be used to access trigger line resources.

RULE: The name of each model key SHALL be unique within a vendor key.

RULE: The name of each model key shall match the Model field from the chassis description file for the
chassis model it represents.

RULE: Each model key SHALL have a string attribute whose name is Library and whose value is the path
to the library implementing the Trigger Manager for that chassis.

RULE: Each model key SHALL have an integer attribute whose name is Version and whose value is
0x00010000.

OBSERVATION: The value of the Version key is the major and minor version of the Trigger Manager
interfaces described in this chapter, where the major version is expressed in the top 16 bits, and the minor
version is expressed in the lower 16 bits.

OBSERVATION: Future versions of this specification will increment the minor version number of the
interface to indicate that new capabilities have been added to the interfaces, but that backward compatibility
has been maintained. The major version number will be incremented only if backward compatibility with
previous versions of the interface is broken. Ideally, incrementing the major version number should be
avoided in future updates to this specification. If no changes have been made to the Trigger Manager interface,
the Version attribute will be unchanged.

OBSERVATION: While updates to the interface version have matched their corresponding specification
versions thus far, this is done for convenience. The above RULE should be taken as the sole authority on the
interface version, and the modification of the Version attribute value in the above RULE should be expected
to rev independently of the revision of this specification.

OBSERVATION: A Trigger Manager client must use the value of the Version attribute to identify the
version of the Trigger Manager interface the Trigger Manager interface complies with. For example, a new
revision of this specification may add an operation to the Trigger Manager interface, incrementing the minor
version. A client can detect support of the new operation by checking the interface version for the
corresponding minor version, as defined in the above RULE in the specification revision which defines the
new operation. Similarly, a Trigger Manager client implemented to use a major interface version of 1 can
check the Version attribute to ensure the major version is 1 and therefore that the Trigger Manager still
supports all requests the client may make. If the major version of a Trigger Manager is 2, a client that does
not comprehend major version 2 should not call the Trigger Manager.

PERMISSION: A vendor key that is a child of the Trigger Managers category key MAY have two optional
attributes, Library, whose type is String, and Version, whose type is Integer, to specify a vendor default
Trigger Manager to be used for chassis created by the specified vendor, but which do not have a Trigger
Manager model key specified.
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 16 www.pxisa.org

2. PXI Trigger Management Software Services
RULE: A Trigger Manager vendor key SHALL NOT have either the Library attribute or the Version attribute
described in the permission above unless it has both attributes.

RULE: The value of the Library attribute described in the above permission SHALL be the path to the library
implementing the Trigger Manager for that vendor.

RULE: The value of the Version attribute described in the above permission SHALL be 0x00010000.

OBSERVATION: To provide backwards compatibility, any vendor’s Trigger Manager may be selected as
the default trigger manager for the system. The selection mechanism is described in PXI-2: PXI Software
Specification.

An example of the Services Tree is shown below. The Chassis, System Modules, and Peripheral Modules
portions of the Services Tree, as described in PXI-6: PXI Express Software Specification, are shown for
context only. [Bracketed] lines indicate keys, with attributes indicated as <name of attribute> = <value of
attribute>.

[Services]
[Chassis]
[Peripheral Modules]
[System Modules]
[Trigger Managers]

[Vendor A]
Library = C:\Vendor A\TrigMan.dll
Version = 0x00010000
[PXI-Chassis-A]

Library = C:\Vendor A\ChassisATrigMan.dll
Version = 0x00010000

[Vendor B]
[PXI-Chassis-B]

Library = C:\Vendor B\TrigMan.dll
Version = 0x00010000

[PXI-Chassis-C]
Library = C:\Vendor B\TrigMan.dll
Version = 0x00010000

In the example, Vendor A has provided a chassis-specific Trigger Manager for PXI-Chassis-A, as well as a
generic Trigger Manager for Vendor A’s chassis other than PXI-Chassis-A. Vendor B has used a single
Trigger Manager to implement trigger management capabilities for PXI-Chassis-B and PXI-Chassis-C, but
specified no vendor default.
© PXI Systems Alliance 17 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

This Page Intentionally Left Blank

3. Software Frameworks and
Requirements

This section discusses the framework-specific details of a PXI or PXI Express Trigger Manager. It gives an
overview of the software requirements for components, along with framework-specific definitions and
bindings for the software library described in previous sections of this specification.

3.1 Overview
The PXI-2: PXI Software Specification and PXI-6: PXI Express Software Specification describe the software
requirements for components in a PXI and PXI Express system and the supported frameworks for software.
The PXI-6: PXI Express Software Specification also describes binding and linkage protocols for specific
software frameworks. This specification builds on those definitions by defining the binding and linkage
protocols for the Trigger Manager in each software framework.

3.2 32-bit Windows System Framework
3.2.1 Introduction

In addition to the requirements in PXI-2: PXI Software Specification and PXI-6: PXI Express Software
Specification, this specification describes additional requirements for software components relating to a
Trigger Manager on 32-bit Windows operating systems.

3.2.2 Trigger Manager Software Bindings
RULE: A Trigger Manager SHALL be implemented as a 32-bit Windows DLL, with each operation
corresponding to an exported symbol of the DLL.

OBSERVATION: Multiple processes can load and call any Trigger Manager simultaneously. Trigger
Managers should take this into account in the implementation.

RULE: A Trigger Manager DLL SHALL export all symbols by name.

RULE: A Trigger Manager DLL SHALL use stdcall as the calling convention for all entry points.

RULE: A Trigger Manager DLL SHALL implement optional parameters by accepting a NULL pointer from
the user for the optional parameter.

RULE: A Trigger Manager DLL SHALL use the following C data types to represent the data types given in
the function definitions.

Operation Data
Type Return Type

Input Parameter
Type

Output Parameter
Type Notes

Integer N/A int32_t int32_t *

Integer […] N/A const int32_t* N/A Pointer to standard C
array, 0-indexed

Status int32_t N/A N/A
© PXI Systems Alliance 19 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

3. Software Frameworks and Requirements
3.2.3 Services Tree Implementation
The Services Tree is implemented in the Windows registry, as described in this section.

RULE: The root of the services tree SHALL be located in the 32-bit Windows registry at the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\PXISA\Services

RULE: Keys and values in the 32-bit services tree SHALL identify 32-bit Trigger Manager components.

RULE: The name of a key in the Services Tree SHALL be the key name of that key in the Windows registry.

RULE: An attribute SHALL be implemented as a value in the Windows registry.

RULE: The types of the Service Tree key attributes SHALL be implemented using the following
registry types.

3.3 32-Bit Linux System Framework
3.3.1 Introduction

In addition to the requirements in PXI-2: PXI Software Specification and PXI-6: PXI Express Software
Specification, this specification describes additional requirements for software components relating to a
Trigger Manager on 32-bit Linux operating systems.

3.3.2 Trigger Manager Software Bindings
RULE: A Trigger Manager in the 32-bit Linux System Framework SHALL be implemented with the same
32-bit Linux Framework software bindings described in PXI-6: PXI Express Software Specification.

RULE: A Trigger Manager SHALL implement optional parameters by accepting a NULL pointer from the
user for the optional parameter.

3.3.3 Service Tree Implementation
RULE: The Services Tree in the 32-bit Linux System Framework SHALL be implemented as described in
PXI-6: PXI Express Software Specification.

Session N/A uintptr_t uintptr_t*

String N/A const char*,
pointing to a null
terminated ASCII
string of
256 characters or
less

char*, pointing to a
caller-allocated buffer
of 256 ASCII
characters, must be
NULL teminated on
return

Services Tree Type Windows Registry Type

Integer DWORD (REG_DWORD)

String String (REG_SZ)

Operation Data
Type Return Type

Input Parameter
Type

Output Parameter
Type Notes
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 20 www.pxisa.org

3. Software Frameworks and Requirements
3.3.4 Security of PXI Files and Interfaces
This section defines bindings to allow enforcement of a security policy on PXISA files and interfaces, in
addition to those described in PXI-2: PXI Software Specification. The reader should refer to that specification
for additional relevant text and details on the permissions notation used here.

RULE: Installation software for a Trigger Manager SHALL set the ownership and permissions of the Trigger
Manager to be at least as permissive as pxisa:pxisa:550.

OBSERVATION: Some Trigger Manager implementations may involve the use of a daemon, files, or other
entities that can have permissions of their own. The above RULE is intended to apply solely to the shared
object that exposes Trigger Manager operations described in this specification. The permissions of other
vendor-specific files, processes, or other resources implementing a Trigger Manager, while relevant to
security, are outside the scope of this specification.

OBSERVATION: The permissions of 550 prevent users outside the pxisa group from tampering with route
and reservation state. Vendors should consider the implications of exposing this functionality to other users
before relaxing the permissions on the Trigger Manager in their implementation.

OBSERVATION: Restricting access to the Trigger Manager shared library alone will not completely
prevent access to Trigger Manager functionality if the interfaces used by the Trigger Manager are exposed to
all callers. Complete protection of such functionality requires that permissions be enforced down to the
user/kernel boundary, or to some other boundary beyond which arbitrary users have no access. However, this
may not always be practical; for example, an implementation may be built on top of an open source driver,
which has many use cases unrelated to PXI, and therefore cannot be restricted.

RULE: Underlying mechanisms used in the implementation of a Trigger Manager SHALL have sufficiently
permissive security implementation such that all callers which are members of the pxisa group will be capable
of executing all of the Trigger Manager’s operations.

3.4 64-Bit Windows System Framework
3.4.1 Introduction

In addition to the requirements in PXI-2: PXI Software Specification and PXI-6: PXI Express Software
Specification, this specification describes additional requirements for software components relating to a
Trigger Manager on 64-bit Windows operating systems.

3.4.2 Trigger Manager Software Bindings
RULE: A Trigger Manager SHALL be implemented as a 64-bit Windows DLL, with each operation
corresponding to an exported symbol of the DLL.

RULE: A Trigger Manager implementation for 64-bit Windows operating systems SHALL implement both
the 64-bit Trigger Manager DLL, as described in this section, and the 32-bit Trigger Manager DLL, as
described in Section 3.2.2, Trigger Manager Software Bindings.

OBSERVATION: Multiple processes can load and call any Trigger Manager simultaneously. Trigger
Managers should take this into account in the implementation.

OBSERVATION: The PXI Drivers defined in PXI-6: PXI Express Software Specification is called, in most
cases, by the PXI Resource Manager, which is a 32-bit component. A 64-bit implementation of PXI Drivers
is therefore not a requirement. A Trigger Manager is different; because its API is intended for use by higher
level client applications, it must be implemented as both a 32-bit DLL and a 64-bit DLL to allow access to
trigger resources by all applications.
© PXI Systems Alliance 21 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

3. Software Frameworks and Requirements
RULE: A Trigger Manager DLL SHALL export all symbols by name.

RULE: A 64-bit Trigger Manager DLL SHALL use the same C data types as the 32-bit System Framework,
as described in section 3.2.2.

RULE: A Trigger Manager DLL SHALL implement optional parameters by accepting a NULL pointer from
the user for the optional parameter.

RULE: 32-bit and 64-bit Trigger Manager DLLs for the same chassis SHALL respect and enforce each
other’s state when making and clearing reservations and routes.

3.4.3 Services Tree Implementation
The Services Tree is implemented in the Windows registry, as described in this section.

RULE: The 32-bit services tree SHALL be implemented as described in section 3.2.3.

RULE: The root of the 64-bit services tree SHALL be located in the 64-bit Windows registry at the following
key:

HKEY_LOCAL_MACHINE\SOFTWARE\PXISA\Services

RULE: Keys and values in the 64-bit services tree SHALL identify 64-bit Trigger Manager components.

RULE: The name of a key in the either Services Tree SHALL be the key name of that key in the Windows
registry.

RULE: An attribute SHALL be implemented as a value in the Windows registry.

RULE: The types of the Service Tree key attributes SHALL be implemented using the following registry
types.

3.5 64-Bit Linux System Framework
3.5.1 Introduction

In addition to the requirements in PXI-2: PXI Software Specification and PXI-6: PXI Express Software
Specification, this specification describes additional requirements for software components relating to a
Trigger Manager on 64-bit Linux operating systems.

3.5.2 Trigger Manager Software Bindings
RULE: A Trigger Manager in the 64-bit Linux System Framework SHALL be implemented with the same
64-bit Linux Framework software bindings described in PXI-6: PXI Express Software Specification.

RULE: A Trigger Manager SHALL implement optional parameters by accepting a NULL pointer from the
user for the optional parameter.

Services Tree Type Windows Registry Type

Integer DWORD (REG_DWORD)

String String (REG_SZ)
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 22 www.pxisa.org

3. Software Frameworks and Requirements
3.5.3 Service Tree Implementation
RULE: The Services Tree in the 64-bit Linux System Framework SHALL be implemented as described in
PXI-6: PXI Express Software Specification.

3.5.4 Security of PXI Files and Interfaces
RULE: The Security of PXI Files and Interfaces SHALL be as defined for the 32-bit Linux framework in
section 3.3.4.
© PXI Systems Alliance 23 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

This Page Intentionally Left Blank

Appendix A: Trigger Manager API Example Code

This section provides C language examples of common use cases that clients of the Trigger Manager API
would use. Note that, unlike production code, these examples do not handle error conditions.

Setting and Clearing a Reservation
Shows how to set and clear the reservation of line 2 on bus 3 of chassis 4.

tPXISA_Status status;

// Open a session to the desired chassis.

tPXISA_Session session;

status = PXISA_ChassisTrig_OpenChassis (

 4,

 "PXISA_CLIENT_2",

 &session

);

// Make the reservation

status = PXISA_ChassisTrig_SetReservation (

 session,

 3, // bus

 2, // line,

 kPXISA_Trig_Reserved

);

///

// Client-specific code that uses the reserved

// line goes here.

///

// Unreserve the line

status = PXISA_ChassisTrig_SetReservation (

 session,

 3, // bus

 2, // line

 kPXISA_Trig_NotReserved

);

PXISA_ChassisTrig_CloseChassis (

 session

);

Reserving Multiple Lines Simultaneously
Sets a reservation on line 1 of buses 1, 2, and 3 simultaneously.

tPXISA_Status status;

// Prepare bus and line lists

tPXISA_Integer buses[3] = {1,2,3};

tPXISA_Integer lines[3] = {1,1,1};

 tPXISA_Integer failureIndex = 0;
© PXI Systems Alliance 25 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

 Appendix A: Trigger Manager API Example Code
// Open a session to the desired chassis.

tPXISA_Session session;

status = PXISA_ChassisTrig_OpenChassis (

 3,

 "PXISA_CLIENT_1",

 &session

);

// Reserve the lines

status = PXISA_ChassisTrig_SetReservationMultiple (

 session,

 3, // reserving three lines (line 1, on three bus segments)

 buses, // buses to reserve

 lines, // lines to reserve

 &failureIndex

);

PXISA_ChassisTrig_CloseChassis (

 session

);

Setting a Route
Shows how to set a route on chassis 3 from bus 1, line 5 to bus 2, line 7.

tPXISA_Status status;

// Open a session to the desired chassis.

tPXISA_Session session;

status = PXISA_ChassisTrig_OpenChassis (

 3,

 "PXISA_CLIENT_1",

 &session

);

// Reserve the destination line for the route.

status = PXISA_ChassisTrig_SetReservation (

 session,

 2, // bus

 7, // line

 kPXISA_Trig_Reserved

);

// Set the desired route

status = PXISA_ChassisTrig_SetRoute (

 session,

 1, // source bus

 5, // source line

 2, // destination bus

 7 // destination line

);
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 26 www.pxisa.org

 Appendix A: Trigger Manager API Example Code
PXISA_ChassisTrig_CloseChassis (

 session

);

Clearing a Route
Shows how to clear the route set above.

tPXISA_Status status;

// Open a session to the desired chassis.

tPXISA_Session session;

status = PXISA_ChassisTrig_OpenChassis (

 3,

 "PXISA_CLIENT_1",

 &session

);

// Clear the desired route

status = PXISA_ChassisTrig_ClearRoute (

 session,

 2, // destination bus

 7 // destination line

);

// Unreserve the destination line for the route.

status = PXISA_ChassisTrig_SetReservation (

 session,

 2, // bus

 7, // line

 kPXISA_Trig_NotReserved

);

PXISA_ChassisTrig_CloseChassis (

 session

);

Printing Line State
Shows how to print the line state of line 3 of bus 1 on chassis 6.

tPXISA_Status status;

// Open a session to the desired chassis.

tPXISA_Session session;

status = PXISA_ChassisTrig_OpenChassis (

 6,

 "PXISA_CLIENT_3",

 &session

);

tPXISA_Integer reserveState, routeSrcBus, routeSrcLine;

tPXISA_Char owner[kPXISA_StringLength];

// Get the desired line state.

status = PXISA_ChassisTrig_GetLineInformation (
© PXI Systems Alliance 27 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

 Appendix A: Trigger Manager API Example Code
 session,

 1, // bus

 3, // line,

 &reserveState,

 &routeSrcBus,

 &routeSrcLine,

 owner

);

// We're done with the chassis - close the session.

PXISA_ChassisTrig_CloseChassis (

 session

);

if (reserveState == kPXISA_Trig_Reserved)

{

 printf("Bus 1 line 3 is reserved by client %s\n", owner);

}

else if (reserveState == kPXISA_Trig_Routed)

{

 printf("Bus 1 line 3 is routed by client %s\n", owner);

 printf(" Source bus : %d\n", routeSrcBus);

 printf(" Source line: %d\n", routeSrcLine);

}

else if (reserveState == kPXISA_Trig_NotReserved)

{

 printf("Bus 1 line 3 is not reserved\n");

}

PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 28 www.pxisa.org

Appendix B: 32-Bit and 64-Bit Windows System
Framework Files and Client Example

PXITriggerManager.h
#if !defined (__pxitriggermanager_h__)

#define __pxitriggermanager_h__

///

//

// Title : PXITriggerManager.h

// Date : 10/7/2011

// Purpose : Definitions for using the API of the PXI Trigger Manager,

// compliant with version 1.0 of the PXI and PXI Express Trigger Management

// Specification. Note that this header requires the use of C99 data types.

// The client of this file is required to ensure that these types are defined

// before including this file, generally by including stdint.h beforehand.

//

///

#if defined(_WIN32) && !defined(_WIN64)

#define PXISA_FUNC __stdcall

#else

#define PXISA_FUNC

#endif

///

//

// Definition of types

//

///

typedef int32_t tPXISA_Status;

typedef int32_t tPXISA_Integer;

typedef tPXISA_Integer * tPXISA_PInteger;

typedef const tPXISA_Integer * tPXISA_PIntegerConstant;

typedef char tPXISA_Char;

typedef const tPXISA_Char * tPXISA_StringConstant;

typedef tPXISA_Char * tPXISA_String;

typedef uintptr_t tPXISA_Session;

typedef tPXISA_Session * tPXISA_PSession;

///

//

// Definition of status codes

//

///

enum ePXISA_Trig_Status

{

 // Status range specifiers

 // Set to avoid conflict with PXIExpress.h from PXI-6

 kPXISA_ErrorCodeStart = -2,
© PXI Systems Alliance 29 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

 Appendix B: 32-Bit and 64-Bit Windows System Framework Files and Client Example
 kPXISA_WarningCodeStart = 2,

 // Errors

 kPXISA_ErrorUnsupported = (kPXISA_ErrorCodeStart-0),

 kPXISA_ErrorInvalidParameter = (kPXISA_ErrorCodeStart-1),

 kPXISA_ErrorLineNotReserved = (kPXISA_ErrorCodeStart-2),

kPXISA_ErrorLineAlreadyReserved = (kPXISA_ErrorCodeStart-3)

kPXISA_ErrorConflictingRoute = (kPXISA_ErrorCodeStart-4),

 kPXISA_ErrorInvalidClient = (kPXISA_ErrorCodeStart-5),

kPXISA_ErrorDisconnected = (kPXISA_ErrorCodeStart-6)

 // Warnings

};

///

//

// Trigger Manager Interface

//

///

#define kPXISA_ChassisTrig_OpenChassis_String "PXISA_ChassisTrig_OpenChassis"

typedef tPXISA_Status (PXISA_FUNC * tPXISA_ChassisTrig_OpenChassis) (

 tPXISA_Integer chassisNum,

 tPXISA_StringConstant clientLabel,

 tPXISA_PSession session

);

#define kPXISA_ChassisTrig_CloseChassis_String "PXISA_ChassisTrig_CloseChassis"

typedef void (PXISA_FUNC * tPXISA_ChassisTrig_CloseChassis) (

 tPXISA_Session session

);

// Possible values for reservation state

enum ePXISA_TriggerLineState

{

 kPXISA_Trig_NotReserved = 0,

 kPXISA_Trig_Reserved = 1,

 kPXISA_Trig_Routed = 2

};

#define kPXISA_ChassisTrig_SetReservation_String

"PXISA_ChassisTrig_SetReservation"

typedef tPXISA_Status (PXISA_FUNC * tPXISA_ChassisTrig_SetReservation) (

 tPXISA_Session session,

 tPXISA_Integer bus,

 tPXISA_Integer line,

 tPXISA_Integer reserve

);
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 30 www.pxisa.org

 Appendix B: 32-Bit and 64-Bit Windows System Framework Files and Client Example
#define kPXISA_ChassisTrig_SetReservationMultiple_String

"PXISA_ChassisTrig_SetReservationMultiple"

typedef tPXISA_Status (PXISA_FUNC * tPXISA_ChassisTrig_SetReservationMultiple) (

 tPXISA_Session session,

 tPXISA_Integer numElements,

 tPXISA_PIntegerConstant buses,

 tPXISA_PIntegerConstant lines,

 tPXISA_PInteger indexOfFailure

);

#define kPXISA_ChassisTrig_SetRoute_String "PXISA_ChassisTrig_SetRoute"

typedef tPXISA_Status (PXISA_FUNC * tPXISA_ChassisTrig_SetRoute) (

 tPXISA_Session session,

 tPXISA_Integer sourceBus,

 tPXISA_Integer sourceLine,

 tPXISA_Integer destBus,

 tPXISA_Integer destLine

);

#define kPXISA_ChassisTrig_ClearRoute_String "PXISA_ChassisTrig_ClearRoute"

typedef tPXISA_Status (PXISA_FUNC * tPXISA_ChassisTrig_ClearRoute) (

 tPXISA_Session session,

 tPXISA_Integer destBus,

 tPXISA_Integer destLine

);

#define kPXISA_ChassisTrig_GetLineInformation_String

"PXISA_ChassisTrig_GetLineInformation"

typedef tPXISA_Status (PXISA_FUNC * tPXISA_ChassisTrig_GetLineInformation) (

 tPXISA_Session session,

 tPXISA_Integer bus,

 tPXISA_Integer line,

 tPXISA_PInteger reserveState,

 tPXISA_PInteger routeSrcBus,

 tPXISA_PInteger routeSrcLine,

 tPXISA_String owner

);

#define kPXISA_ChassisTrig_ClearAllRoutesAndReservations_String

"PXISA_ChassisTrig_ClearAllRoutesAndReservations"

typedef tPXISA_Status (PXISA_FUNC *

tPXISA_ChassisTrig_ClearAllRoutesAndReservations) (

 tPXISA_Session session

);

#endif // #if !defined (__pxitriggermanager_h__)
© PXI Systems Alliance 31 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

 Appendix B: 32-Bit and 64-Bit Windows System Framework Files and Client Example
PXITriggerManager.def
; Module definition file for a PXI Trigger Manager

EXPORTS

 PXISA_ChassisTrig_OpenChassis

 PXISA_ChassisTrig_CloseChassis

PXISA_ChassisTrig_SetReservation

PXISA_ChassisTrig_SetReservationMultiple

 PXISA_ChassisTrig_SetRoute

 PXISA_ChassisTrig_ClearRoute

 PXISA_ChassisTrig_GetLineInformation

 PXISA_ChassisTrig_ClearAllRoutesAndReservations

Client Example
The series of steps below describes the sequence of steps that are executed by a client in order to locate and
use the Trigger Manager for chassis 2, model PXI Chassis, manufactured by vendor PXI Vendor on a system
running Microsoft Windows. Note that a thorough understanding of these steps relies on an understanding of
mechanisms described throughout this document, as well as Trigger Manager information from the system
description file(s), the population of which is described in PXI-2: PXI Software Specification and PXI-6: PXI
Express Software Specification.

1. The client requires access to trigger resources in chassis 2.

2. The client reads the pxisys.ini file and/or pxiesys.ini file searching for the description of chassis
2. Refer to the PXI-2 and PXI-6 specifications for descriptions of the pxisys.ini and pxiesys.ini
file formats, respectively.

[Chassis2]

...

TriggerManager="PXI Vendor\PXI Chassis"

...

3. The client reads the TriggerManager attribute from the [Chassis2] section of the system description file.

4. The client appends the attribute value from the system description file to the path to the Trigger
Managers section of the Services Tree, resulting in:

<path to services tree root>\Trigger Managers\PXI Vendor\PXI Chassis

5. The client reads the relevant section of the Services Tree to find that the appropriate Trigger Manager for
chassis 2 is C:\Program Files\PXI Vendor\TriggerManager1.dll.

[...]

[Services]

[Trigger Managers]

[PXI Vendor]

[PXI Chassis]

Library = C:\Program Files\PXI Vendor\TriggerManager1.dll

Version = 0x00010000

[PXI Some Other Chassis]

Library = C:\Program Files\PXI Vendor\TriggerManager2.dll

Version = 0x00010000

[Some Other PXI Vendor]

Library = C:\Program Files\Some Other PXI Vendor\DefaultTriggerManager.dll

Version = 0x00010000
PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18 32 www.pxisa.org

 Appendix B: 32-Bit and 64-Bit Windows System Framework Files and Client Example
6. The client loads TriggerManager1.dll and opens a session to chassis 2 using some client label.

7. The client accesses the Trigger Manager as necessary. The client can consult the system description
file(s) for information on the trigger line routing and reservation capabilities provided by the chassis, but
the Trigger Manager will also enforce the hardware limitations by returning errors when appropriate.

8. The client may close its session to the Trigger Manager, or it may continue to leave it open if other
reservations or routes may need to be changed.

9. The client performs operations outside of the Trigger Manager which drive the trigger lines that have
been reserved.

10. If the client previously closed its session, it reopens the session with the same client label used previously.

11. When the client is finished with the trigger resources, it clears its reservations and routes and closes the
session.
© PXI Systems Alliance 33 PXI and PXI Express Trigger Management Spec. Rev. 1.1 5/31/18

	PXI-9 PXI and PXI Express Trigger Management Specification
	IMPORTANT INFORMATION
	Copyright
	NOTICE
	Trademarks

	PXI and PXI Express Trigger Management Specification Revision History

	Contents
	1. Introduction
	2. PXI Trigger Management Software Services
	3. Software Frameworks and Requirements
	Appendix A: Trigger Manager API Example Code
	Appendix B: 32-Bit and 64-Bit Windows System Framework Files and Client Example

	1. Introduction
	1.1 Objectives
	1.2 Intended Audience and Scope
	1.3 Background and Terminology
	1.4 Applicable Documents

	2. PXI Trigger Management Software Services
	2.1 Overview
	2.2 PXI Trigger Manager
	2.2.1 Theory of Operations
	2.2.2 PXISA_ChassisTrig_OpenChassis
	2.2.3 PXISA_ChassisTrig_CloseChassis
	2.2.4 PXISA_ChassisTrig_SetReservation
	2.2.5 PXISA_ChassisTrig_SetReservationMultiple
	2.2.6 PXISA_ChassisTrig_SetRoute
	2.2.7 PXISA_ChassisTrig_ClearRoute
	2.2.8 PXISA_ChassisTrig_GetLineInformation
	2.2.9 PXISA_ChassisTrig_ClearAllRoutesAndReservations

	2.3 Backward Compatibility
	2.4 Status Codes
	2.5 Registration of Trigger Managers
	2.5.1 Trigger Manager Services Tree

	3. Software Frameworks and Requirements
	3.1 Overview
	3.2 32-bit Windows System Framework
	3.2.1 Introduction
	3.2.2 Trigger Manager Software Bindings
	3.2.3 Services Tree Implementation

	3.3 32-Bit Linux System Framework
	3.3.1 Introduction
	3.3.2 Trigger Manager Software Bindings
	3.3.3 Service Tree Implementation
	3.3.4 Security of PXI Files and Interfaces

	3.4 64-Bit Windows System Framework
	3.4.1 Introduction
	3.4.2 Trigger Manager Software Bindings
	3.4.3 Services Tree Implementation

	3.5 64-Bit Linux System Framework
	3.5.1 Introduction
	3.5.2 Trigger Manager Software Bindings
	3.5.3 Service Tree Implementation
	3.5.4 Security of PXI Files and Interfaces

	Appendix A: Trigger Manager API Example Code
	Setting and Clearing a Reservation
	Reserving Multiple Lines Simultaneously
	Setting a Route
	Clearing a Route
	Printing Line State

	Appendix B: 32-Bit and 64-Bit Windows System Framework Files and Client Example
	PXITriggerManager.h
	PXITriggerManager.def
	Client Example

