
PXI MultiComputing
Software Specification

PXI MultiComputing Software Specification Rev. 1.1 5/31/18

Revision 1.1
May 31, 2018

-8

IMPORTANT INFORMATION

Copyright
© Copyright 2009–2018 PXI Systems Alliance. All rights reserved.

This document is copyrighted by the PXI Systems Alliance. Permission is granted to reproduce and distribute this
document in its entirety and without modification.

NOTICE
The PXI MultiComputing (PXImc) Software Specification is authored and copyrighted by the PXI Systems Alliance.
The intent of the PXI Systems Alliance is for the PXImc Software Specification to be an open industry standard
supported by a wide variety of vendors and products. Vendors and users who are interested in developing
PXI-compatible products or services, as well as parties who are interested in working with the PXI Systems Alliance
to further promote PXI as an open industry standard, are invited to contact the PXI Systems Alliance for further
information.

The PXI Systems Alliance wants to receive your comments on this specification. Visit the PXI Systems Alliance web
site at http://www.pxisa.org/ for contact information and to learn more about the PXI Systems Alliance.

The attention of adopters is directed to the possibility that compliance with or adoption of the PXI Systems Alliance
specifications may require use of an invention covered by patent rights. The PXI Systems Alliance shall not be
responsible for identifying patents for which a license may be required by any PXI Systems Alliance specification, or
for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. PXI
Systems Alliance specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

The information contained in this document is subject to change without notice. The material in this document details
a PXI Systems Alliance specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company’s products.

The PXI Systems Alliance makes no warranty of any kind with regard to this material, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. The PXI Systems Alliance shall not be
liable for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Compliance with this specification does not absolve manufacturers of PXI equipment from the requirements of safety
and regulatory agencies (UL, CSA, FCC, IEC, etc.).

Trademarks
PXI™, PXI-Express, PXImc, the PXImc Logo, and the PXImc Glyph are trademarks of the PXI Systems Alliance.

PICMG™ and CompactPCI® are trademarks of the PCI Industrial Computation Manufacturers Group.

Product and company names are trademarks or trade names of their respective companies.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 ii www.pxisa.org

PXI MultiComputing Software Specification Revision History
This section is an overview of the revision history of the PXI MultiComputing (PXImc) Software Specification.

Revision 1.0 RC 1, September 16, 2009
This is the first public revision of the PXI MultiComputing Software Specification.

Revision 1.1, May 31, 2018
Added text for PXIMC_enableDeviceAccess.

Changed filenames for the PXImc Dispatcher on the Linux operating system.
© PXI Systems Alliance iii PXI MultiComputing Software Specification Rev. 1.1 5/31/18

This Page Intentionally Left Blank.

Contents

1. Introduction

1.1 Objectives.. 1
1.2 Intended Audience and Scope... 2
1.3 Background and Terminology... 2
1.4 Applicable Documents .. 3

2. PXImc Software Architecture Overview
2.1 Overview ... 5
2.2 PXImc Physical Layer... 6
2.3 Vendor Specific Kernel Layer .. 6
2.4 Vendor Specific User Layer.. 6
2.5 Shared Component Layer.. 7

3. API
3.1 Overview ... 8
3.2 Objectives.. 8
3.3 API .. 8

3.3.1 Interfaces ... 9
3.3.1.1 PXIMC_findInterfaces .. 9
3.3.1.2 PXIMC_queryInterfaceInformation .. 10
3.3.1.3 PXIMC_waitForInterfaceEvent... 15
3.3.1.4 PXIMC_findWindows... 16
3.3.1.5 PXIMC_queryWindowInformation... 18

3.3.2 Sessions ... 22
3.3.2.1 Opening a Session.. 22
3.3.2.2 Session Pairing... 24
3.3.2.3 Request Window API .. 25

3.3.2.3.1 PXIMC_requestWindowLogicalAsServer........................... 25
3.3.2.3.2 PXIMC_requestWindowLogicalAsClient 28
3.3.2.3.3 PXIMC_requestWindowLogicalAsPeer 31
3.3.2.3.4 PXIMC_requestWindowPhysicalAsServer 34
3.3.2.3.5 PXIMC_requestWindowPhysicalAsClient 37

3.3.2.4 Session Pairing API ... 39
3.3.2.4.1 PXIMC_waitForConnection .. 39

3.3.3 Window Physical Addresses ... 42
3.3.3.1 PXIMC_getPhysicalAddress ... 42

3.3.4 Session Events... 43
3.3.4.1 PXIMC_assertEvent .. 43
3.3.4.2 PXIMC_waitForSessionEvent... 44

3.3.5 Closing a Session .. 46
3.3.5.1 PXIMC_closeWindow... 46
3.3.5.2 PXIMC_cleanup .. 47

4. PXImc Shared Component:
PXImc Dispatcher

4.1 Overview ... 48
4.2 Objectives.. 48
4.3 Behavior .. 48

4.3.1 PXIMC_findInterfaces .. 48
4.3.2 Interface-based functions .. 49
4.3.3 Requesting a window .. 49
4.3.4 Session-based functions .. 50
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 v www.pxisa.org

Contents
4.3.5 PXIMC_cleanup.. 50
4.4 Registration ... 50

4.4.1 Windows.. 50
4.4.1.1 32-bit Windows ... 50
4.4.1.2 64-bit Windows ... 51

4.4.2 Linux ... 52
4.5 Installation... 52

4.5.1 32 bit Windows ... 52
4.5.2 64 bit Windows ... 53
4.5.3 Linux ... 54

4.5.3.1 32-bit Linux ... 55
4.5.3.2 64-bit Linux ... 55

5. Protocols
5.1 Overview ... 56

6. Virtual Mesh
6.1 Overview ... 57

A. Appendix: Example Use
A.1 Process to Process ... 58
A.2 Process sourcing data directly to hardware... 71
A.3 Hardware sourcing data directly to process .. 79
A.4 Hardware sourcing data directly to hardware ... 86
A.5 Process sourcing data to hardware and hardware sourcing data to process 95
A.6 Bi-directional link where hardware is sourcing data directly to hardware in both directions 95

B. Appendix: pximc.h

C. Appendix: PXImc Background Information
C.1 PCI(e) BARs and the BIOS... 106
C.2 PCI(e) Device Drivers... 107
C.3 I/O via PXImc ... 108

Tables
Table 3-1. reasonCode Return Values .. 16

Table A-1. Figure A-2 Footnotes ... 62
Table A-2. Figure A-3 Footnotes ... 68
Table A-3. Figure A-4 Footnotes ... 70
Table A-4. Figure A-5 Footnotes ... 74
Table A-5. Figure A-6 Footnotes ... 82
Table A-6. Figure A-7 Footnotes ... 90

Figures
Figure 2-1. Software Visible Logical Connection .. 5
Figure 2-2. PXImc Software Model.. 6

Figure 6-1. PXImc Tree Topology.. 57

Figure A-1. Example Configuration .. 58
Figure A-2. Process to Process Connection Initiation ... 61
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 vi www.pxisa.org

Contents
Figure A-3. Sample I/O and Events... 67
Figure A-5. Process to Hardware Connection Initiation.. 73
Figure A-6. Hardware to Process Connection Initiation.. 81

Figure C-1. PXImc Initialization Overview .. 106
Figure C-2. Access Mapping of NTB BAR(s) to Physical Memory... 107
Figure C-3. I/O Via PXImc ... 108
© PXI Systems Alliance vii PXI MultiComputing Software Specification Rev. 1.1 5/31/18

1 Introduction
1. Introduction

The focus of the PXI MultiComputing (PXImc) Software Specification is to define a shared memory and other
standard protocols to allow CPU Based Devices to communicate through Non-Transparent Bridges (NTB),
and takes advantage of address translated PCI or PCI Express write transactions. The PXImc Software
Specification is designed to be used by both general purpose CPU networks and component-based instrument
systems.

1.1 Objectives
The objectives of this specification are as follows:
• Define PXImc Software Requirements
• Provide a specification for data transfer between PCI(e) root complexes

• CPU process to CPU process (physical memory to physical memory)

• CPU process to PCI(e) device

• PCI(e) device to CPU process

• PCI(e) device to PCI(e) device
• Enable the highest possible performance of the underlying hardware

• Highest bandwidth

• Lowest latency
• Model API specification after existing API specs (such as PXI-6)
• Define a ‘thin’ API that supports data transfer and event generation

• Provide sufficient functionality to support future high-level APIs
• API should be easy to spec, easy to implement, and easy to use

• Suitable for the average device customer
• Maximize interoperability for users

• Maximize the portability and interoperability of applications to multiple PXImc Logic Block
Vendors’ implementations beyond the benefits of implementing the standardized PXImc API.

• An application using a PXImc interface should be able to be developed in such a way that
any PXImc Logic Block vendor could supply the interface and the application would
continue to function without modification/recompilation.

• Multiple PXImc Logic Block vendors should be able to co-exist on any system, and the
coexistence should be transparent to client applications

• An application using PXImc should be able to be developed in such a way that the
application can be unaware of the number of PXImc Logic Block vendors on the system,
and be able to easily interact with any or all PXImc Logic Blocks, regardless of vendor.

• Define environment agnostic interfaces and requirements so that this spec can be implemented in a
variety of environments

• C-based API

• Easy for users to interact with from any programming language

• Use simple data types
• Allow the format of the data transferred over PXImc to be determined by an upper-layer protocol (such

as a 488.2 or raw data transfer protocol)
• Allow multiple client applications on a system to transfer data in parallel independently of each other
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 8 www.pxisa.org

1 Introduction
• Allow multiple simultaneous memory windows to be opened between PXImc Device and
Primary System Host

The non-objectives of this specification are as follows:
• This version of the specification will not enable hot-plug
• This version of the specification will not enable “Virtual Mesh” (but “Virtual Mesh” support is

expected to be added in some future version of this specification)
• This specification does not specify the format or interpretation of the data transferred over PXImc
• This specification does not specify any alternate methods for communicating across the PXImc other

than using the PXImc API defined within this specification
• This specification does not specify the mechanism for PCI(e) device enumeration and PCI(e) device

resource allocation
• This specification does not specify any specifics regarding PCI(e) tree topology

1.2 Intended Audience and Scope
This specification is primarily intended for product developers interested in implementing and leveraging
software features of the PXImc technology. Hardware developers will be interested in using these software
interfaces for identifying and describing the capabilities of PXImc hardware products. Likewise, software
developers and systems integrators should take advantage of these software interfaces to manage PXImc
resources. Additionally, product developers and systems integrators should reference the operating system
framework definitions to ensure system-level interoperability. Note that the definitions and requirements
described in this document apply to PXImc hardware components only (that is, hardware components defined
by the PXImc Hardware Specification).

1.3 Background and Terminology
This section defines the acronyms and key words referred to throughout this specification. This specification
uses the following acronyms and key words:

• API: Application Programming Interface.

• Bandwidth: The amount of data transmitted in a time unit.

• BIOS: Basic Input/Output System.

• Client: Sessions that will only be paired with remote server sessions. Refer to Section 3.3.2.1, Opening
a Session.

• Client Application: Application that uses the PXImc API that is defined in Section 3.3, API.

• Event: An action initiated that can be received by some communication partner.

• Interface: An entity that logically connects one system to another system.

• Latency: The amount of time between an event or action being initiated by the transmitter and the event
or action being received by the receiver.

• Local Session: A session that is opened on the local side of the interface.

• Local Window: From the perspective of the local session, the local window resides in physical memory
that is present locally.

• Logical: A session where both the local window and the remote window addresses are provided by the
PXImc Logic Block. Refer to Section 3.3.2.1, Opening a Session.

• Non-Transparent Bridge: Refer to the PXImc Hardware Specification.

• OS: Operating System.

• Paired Session: After a session has been created and the session pairing, as defined in Section 3.3.2.2,
Session Pairing, has executed and found a compatible session on the remote side of the interface, the
session that is paired with the local session is the "paired session".
© PXI Systems Alliance 9 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

1 Introduction
• PCI-Express Root Complex: Refer to the PXImc Hardware Specification.

• Peer: Sessions that will only be paired with remote peer sessions. Refer to Section 3.3.2.1, Opening a
Session.

• Physical: A session where either the local window or the remote window physical address is manually
provided by the user. Refer to Section 3.3.2.1, Opening a Session.

• Physical Memory: Physically present units for data storage (RAM).

• Primary System Host: Refer to the PXImc Hardware Specification.

• PXImc Device: Refer to the PXImc Hardware Specification.

• PXImc Logic Block: Refer to the PXImc Hardware Specification.

• PXImc Logic Block Vendor: The vendor that implements the PXImc Logic Block.

• Remote Session: A session that is opened on the remote side of the interface.

• Remote Window: From the perspective of the local session, the remote window resides in physical
memory that is present remotely. Accesses to the remote window result in an access across the interface.

• Server: Sessions that will only be paired with remote client sessions. Refer to Section 3.3.2.1, Opening
a Session.

• Session: The value that represents a window request over a PXImc interface. Refer to Section 3.3.2,
Sessions.

• Shared Component: The PXImc Dispatcher. Refer to Section 4. PXImc Shared Component: PXImc
Dispatcher.

• Virtual Mesh: The ability to directly connect between two PXImc Devices using the PXImc API. Refer
to Section 6. Virtual Mesh.

This specification uses several key words, which are defined as follows:

RULE: Rules SHALL be followed to ensure compatibility. A rule is characterized by the use of the words
SHALL and SHALL NOT.

RECOMMENDATION: Recommendations consist of advice to implementers that will affect the usability
of the final module. A recommendation is characterized by the use of the words SHOULD and SHOULD
NOT.

PERMISSION: Permissions clarify the areas of the specification that are not specifically prohibited.
Permissions reassure the reader that a certain approach is acceptable and will cause no problems. A
permission is characterized by the use of the word MAY.

OBSERVATION: Observations spell out implications of rules and bring attention to things that might
otherwise be overlooked. They also give the rationale behind certain rules, so that the reader understands why
the rule must be followed.

MAY: A key word indicating flexibility of choice with no implied preference. This word is usually associated
with a permission.

SHALL: A key word indicating a mandatory requirement. Designers SHALL implement such mandatory
requirements to ensure interchangeability and to claim conformance with the specification. This word is
usually associated with a rule.

SHOULD: A key word indicating flexibility of choice with a strongly preferred implementation. This word
is usually associated with a recommendation.

1.4 Applicable Documents
• PCI Express External Cabling Specification, Revision 1.0

• PCI Express Base Specification, Revision 1.1

• PXI Express Hardware Specification, Revision 1.0
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 10 www.pxisa.org

1 Introduction
• PXImc Hardware Specification, Draft 1

• PCI Local Bus Specification, Revision 2.3

• PCI-to-PCI Bridge Architecture Specification, Revision 1.2
© PXI Systems Alliance 11 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

2 PXImc Software Architecture Overview
2. PXImc Software Architecture
Overview

2.1 Overview
The PXImc Hardware Specification defines the PCI(e) topology present between a Primary System Host and
a PXImc Device.

OBSERVATION: The Non-Transparent Bridge appears as a PCI(e) device to the Primary System Host and
also appears as a PCI(e) device to the PXImc Device.

Software for the PXImc hardware that resides within the Primary System Host is not addressed in this
specification. This hardware can be viewed as an extension of the Primary System Host’s PCI(e) tree, and
should be transparent to the PXImc software.

OBSERVATION: PXImc hardware within the Primary System Host is completely interoperable with any
vendor’s PXImc Device hardware, assuming the two pieces of hardware use the same interconnect (cable &
connector)

From the perspective of software, a single PXImc connection can be logically represented by Figure 2-1.

Figure 2-1. Software Visible Logical Connection

OBSERVATION: To software, the following details of the physical topology are all abstracted:
• Physical location of the NTB hardware
• Physical boundaries of the Primary System Host and the PXImc Device
• Interconnect method (cable or backplane)
• Bus technology (PCI or PCI-Express)

Software will be needed to run on both the Primary System Host and the PXImc Device to interact with the
PXImc hardware. The vendor of the PXImc hardware (The PXImc Logic Block Vendor) will provide the
software for device interaction on both the Primary System Host and the PXImc Device. Figure 2-2 indicates
the software stacks on the Primary System Host and the PXImc Device. The dashed lines indicate the
interfaces defined by this specification.

Host
Bridge

Primary System Host

NTB

PCI family
device

PCI family
device

Host
Bridge

PXImc Device
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 12 www.pxisa.org

2 PXImc Software Architecture Overview
Figure 2-2. PXImc Software Model

The PXImc Software Specification defines an interface (the PXImc user mode API) that allows for data
transactions/event generation. It does not define how this interface must be implemented; the implementation
detail is left for the PXImc Logic Block Vendor. It does define many of the behaviors that must be provided
by the interface, but allows the PXImc Logic Block Vendor implementation freedom, as long as the behaviors
of the PXImc user mode API comply to the specified behaviors. This approach allows the PXImc Logic Block
Vendor flexibility and freedom in many aspects of implementation (such as hardware selection).

2.2 PXImc Physical Layer
The Physical Layer provides the main functions required to setup and communicate with the physical
hardware. This consists of the physical hardware and PCI(e) enumeration.

PCI(e) enumeration is typically provided by the host operating system and/or the system BIOS. Different
operating systems will implement this functionality resulting in slightly different behavior. Typically, the OS
will give an interface to a device driver developer to find and discover the hardware.

2.3 Vendor Specific Kernel Layer
The Kernel Layer behaviors are not defined by this specification. It is assumed that the Kernel Layer will help
deliver the features needed to comply with the API specification. The Kernel Layer component will follow
operating system specific conventions for associating with the PXImc hardware. While not required, it is
assumed the Kernel Layer performs accesses to the PXImc hardware. The Kernel Layer may interact with the
PXImc hardware in any way it chooses; its interaction with the hardware is not included in this specification.
The Kernel Layer only exists on dual mode operating systems.

2.4 Vendor Specific User Layer
The minimum User Layer interface is defined by this specification. The User Layer SHALL export the API
specification defined in Section 3.3, API. It is assumed that the User Layer will help deliver the features
needed to comply with the API specification. The User Layer may have additional features or functions
exported from it beyond the requirements of the API specification. The User Layer may interact with the
Kernel Layer in any way it chooses; its interaction with the Kernel Layer is not included in this specification.

PXImc Physical LayerPhysical Layer

Vendor Specific Kernel Layer
(Provided by the PXImc Logic Block Vendor)

Kernel Layer

Vendor Specific User Layer
(Provided by the PXImc Logic Block Vendor)

User Layer

Shared Component
(Provided by the PXImc Specification Committee)
© PXI Systems Alliance 13 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

2 PXImc Software Architecture Overview
2.5 Shared Component Layer
A PXImc Shared Component is included in this specification so that components above the PXImc layer can
load the shared component and make API calls that can be run regardless of the vendor of the PXImc. It is
covered in detail in Section 4., PXImc Shared Component: PXImc Dispatcher.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 14 www.pxisa.org

3 API
3. API

3.1 Overview
This section defines the API that shall be implemented for the PXImc system.

3.2 Objectives
The following objectives were identified for the PXImc API
• Allow multiple simultaneous memory windows to be opened between two systems
• Enable vendor-independent interoperability of user applications
• Implement the PXImc API in the most environment-independent way possible
• Do not impede the performance of the hardware or add unnecessary overhead
• Allow for the API to be implemented on 32 or 64 bit environments

• Do not preclude implementations where one side of the connection is a 32-bit environment and the
other side of the connection is a 64-bit environment

• Allow for the API to be implemented on little-endian or big-endian environments

• Do not preclude implementations where one side of the connection is a little-endian environment and
the other side of the connection is a big-endian environment

The following non-objectives were identified for the PXImc API
• This API specification does not specify the format of the data being transferred, and instead allows

protocols to run on top of PXImc to define the data format

3.3 API
A dynamic library implementing the functionality defined by this specification is called a PXImc
Vendor-Specific User Layer.

RULE: A PXImc Vendor-Specific User Layer SHALL export all symbols by name.

RULE: A PXImc Vendor-Specific User Layer SHALL use the standard system calling convention for all
entry points. On 32-bit Windows, this SHALL be stdcall.

RULE: A PXImc Vendor-Specific User Layer SHALL be thread safe, allowing multiple threads to
simultaneously call functions.

RULE: A PXImc Vendor-Specific User Layer SHALL contain all of the API operations defined in
Section 3.3. Each of the operations SHALL correspond to an exported symbol of the dynamic library.

All functions return a tPXIMC_Status value to indicate the status from the function. The value
PXIMC_SUCCESS is used to indicate successful execution, negative numbers indicate an error condition, and
positive numbers indicate a warning condition. All other output values are returned as arguments. The
convention for output values is that the caller allocates the memory to contain the output value, and the API
populates the caller-supplied memory with the value to return.

The API uses fundamental C data types to represent the data types given in the function definitions. All
arguments are supplied and returned in the local native endianness.

OBSERVATION: The Vendor-Specific User Layer MAY need to translate endianness of some arguments
so that all data provided to the local caller of the PXImc API is provided data in the local endianness.
© PXI Systems Alliance 15 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
3.3.1 Interfaces

3.3.1.1 PXIMC_findInterfaces

Purpose
Returns an array of unsigned integers that enumerate the available PXImc "interfaces" present in the system.

Parameters

Return Values

Description
The caller of PXIMC_findInterfaces allocates an array of U32s, and passes the address of the array and
the size of the array as parameters. PXIMC_findInterfaces locates the interfaces present in the system that
comply with the PXImc Specification, and returns the list of interfaces through the interfaceIDs
parameter. The caller can then take additional action on one or more interface.

actualNumberOfInterfaces holds the number of interfaces written to the interfaceIDs array. If
insufficient space is allocated by the user to hold the list of interfaces, actualNumberOfInterfaces is set
to the actual number of interfaces present in the system.

Implementation Requirements
RULE: PXIMC_findInterfaces SHALL return at least one interface for every PXImc Logic Block where
the logic block vendor has successfully initialized the local interface.

Name Direction Type Description

maxNumberOfInterfaces In uint32_t Size, in U32s, of the provided interfaceIDs
buffer.

interfaceIDs Out uint32_t * Array of interfaces. Each interface is
represented by a single U32).

actualNumberOfInterfaces Out uint32_t * The actual number of interfaces populated into
the interfaceIDs array, or the number of
interfaces present if insufficient space was
provided in the interfaceIDs array.

Completion Code Description

PXIMC_SUCCESS The list of interfaces was successfully populated into the interfaceIDs
parameter.

Error Codes Description

PXIMC_INSUFFICIENT_SPACE The maxNumberOfInterfaces parameter indicates that the space
available in the interfaceIDs array isn’t sufficient to hold the complete
array of interfaces.

Warning Codes Description

PXIMC_NO_PROVIDER No vendor-specific user layer is registered with the PXImc Dispatcher.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 16 www.pxisa.org

3 API
RULE: PXIMC_findInterfaces SHALL return an interface regardless of whether the remote side of the
interface has been initialized.

OBSERVATION: Physically-present PXImc interfaces may not be returned by PXIMC_findInterfaces.
Some reasons this can occur are:

• The PXImc interface may not have a device driver installed

• The PXImc device driver may not be properly associated with the PXImc interface

RULE: Interface numbers SHALL be unique.

RULE: Interface numbers SHALL NOT be zero.

RECOMMENDATION: A given interfaceID SHOULD be constant across power cycles and reboots for
any specific PXImc Logic Block instance. If the hardware configuration across reboots is constant, then the
interfaceIDs available SHOULD also be constant.

RULE: IF the maxNumberOfInterfaces argument is insufficient to hold the entire list of interfaces, the
actualNumberOfInterfaces parameter SHALL be updated to contain the number of interfaces present.
In this case the return value SHALL be PXIMC_INSUFFICIENT_SPACE.

RULE: IF the value passed in the maxNumberOfInterfaces argument is equal to or greater than the
minimum size needed to hold the entire list of interfaces, THEN the value of actualNumberOfInterfaces
SHALL hold the number of interfaces written to the interfaceIDs array.

OBSERVATION: An interface returned from PXIMC_findInterfaces represents the system on the
remote side of the PXImc connection.

OBSERVATION: PXIMC_findInterfaces returns the interfaces available at the time
PXIMC_findInterfaces is called. Subsequent system changes may cause changes in the list of available
interfaces. To detect these changes, a program should re-call PXIMC_findInterfaces.

OBSERVATION: Executing PXIMC_findInterfaces is likely the initial call into the PXImc API. Further
action is taken by executing a specific action against a specific interface returned by
PXIMC_findInterfaces.

OBSERVATION: It is possible that zero interfaces are found, and therefore no interfaces written to the
interfaceIDs buffer, if no interfaces are present.

3.3.1.2 PXIMC_queryInterfaceInformation

Purpose
Allow attributes of an interface to be queried.
© PXI Systems Alliance 17 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Parameters

Return Values

Name Direction Type Description

interfaceID In uint32_t Interface on which to query the
attribute.

attributeID In uint32_t Attribute to query.

maxSizeOfAttributeValue In uint32_t Size, in bytes, of the
attributeValue buffer.

attributeValue Out void * Attribute value.

actualSizeOfAttributeValue Out uint32_t * The actual number of bytes written
to the attributeValue buffer, or
the size of the attribute if
insufficient space was provided in
the attributeValue array.

Completion Code Description

PXIMC_SUCCESS The attribute value was successfully populated into the attributeValue
parameter.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified by interfaceID is not a valid interface.

PXIMC_NSUP_ATTRIBUTE Attribute requested is not supported.

PXIMC_INSUFFICIENT_SPACE The maxSizeOfAttributeValue parameter indicates that the space
available in the attributeValue buffer isn’t sufficient to hold the complete
attribute value.

PXIMC_ALIGNMENT_ERROR The attributeValue buffer does not meet the alignment criteria required
by the type of attribute requested.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 18 www.pxisa.org

3 API
Attributes

String Attributes

Unsigned 32-bit Integer Attributes

Attribute Name Description Required or optional

PXIMC_STR_MANF_NAME The manufacturer name of the
PXImc Logic Block hardware

Optional

PXIMC_STR_MODEL_NAME The model name of the PXImc Logic
Block

Optional

PXIMC_STR_SERIAL_NAME The serial number of the PXImc
Logic Block

Optional

PXIMC_STR_LOG_DATA Any log data recorded against the
interface

Optional

PXIMC_STR_INTERFACE_NAME The name of the interface Optional

PXIMC_STR_REMOTE_OS The operating system running on the
remote system

Optional

Attribute Name Description Potential Values
Required or

optional

PXIMC_U32_PROTOCOL_VERSION The PXImc
protocol version
that this interface is
compliant with.

PXIMC_SPEC_VERSION

For the 1.0 version of the
spec, this value is
0x00010000.

Required

PXIMC_U32_MANF_ID The vendor-ID of
the PXImc Logic
Block Vendor

Any Required

PXIMC_U32_INTERFACE_STATE Indicates whether
the remote side of
the interface has
been initialized, and
whether this
interface can
currently be used to
establish a
connection to the
remote system

PXIMC_STATE_UP
PXIMC_STATE_DOWN

Required

PXIMC_U32_INTERFACE_DEVICE_ID The device-ID of
the PCI(e) device
that is providing the
interface

Any Optional

PXIMC_U32_INTERFACE_VENDOR_ID The vendor-ID of
the PCI(e) device
that is providing the
interface

Any Optional
© PXI Systems Alliance 19 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
PXIMC_U32_INTERFACE_SS_ID The subsystem ID
of the PCI(e) device
that is providing the
interface

Any Optional

PXIMC_U32_INTERFACE_SS_VENDOR_ID The subsystem
vendor ID of the
PCI(e) device that
is providing the
interface

Any Optional

PXIMC_U32_INTERFACE_BUS The PCI(e) bus
number of the
device that is
providing the
interface

Any Optional

PXIMC_U32_INTERFACE_DEV The PCI(e) device
number of the
device that is
providing the
interface

Any Optional

PXIMC_U32_INTERFACE_FUNC The PCI(e) function
number of the
device that is
providing the
interface

Any Optional

PXIMC_U32_INTERFACE_LOCAL Indicates whether
the physical
interface is located
in the local system

PXIMC_LOCAL
PXIMC_REMOTE

Optional

PXIMC_U32_REMOTE_ENDIANNESS Returns how the
value
“0x12345678” is
represented on the
remote system if
examined as an
array of bytes, from
the lowest address
to the highest
address

Any. Little-endian
systems would return
“0x78563412”.
Big-endian systems
would return
“0x12345678”.

Optional

PXIMC_U32_REMOTE_WORD_SIZE Returns the actual
number of bits for
the remote's native
word size, e.g. the
values 32 or 64

Any. 64-bit systems
would return ‘64’. 32-bit
systems would return ‘32’

Optional

Attribute Name Description Potential Values
Required or

optional
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 20 www.pxisa.org

3 API
Description
PXIMC_queryInterfaceInformation can be used to query the state of an attribute of the specified
interface. The type of the return value should be interpreted based on the type of attribute queried.

actualSizeOfAttributeValue holds the number of bytes written to the attributeValue buffer. If
insufficient space is allocated by the user to hold the attribute value, actualSizeOfAttributeValue is set
to the actual number of bytes needed to hold the attribute value requested.

Implementation Requirements
RULE: IF the value passed in the maxSizeOfAttributeValue argument is equal to or greater than the
minimum size needed to hold the entire attribute value, THEN the value of
actualSizeOfAttributeValue SHALL be set to the number of bytes written to the attributeValue
buffer.

RULE: IF the value passed in the maxSizeOfAttributeValue argument is less than the minimum size
needed to hold the entire attribute value, THEN the value of actualSizeOfAttributeValue SHALL be
set to the minimum number of bytes needed to hold the attribute requested. In this case the return value
SHALL be PXIMC_INSUFFICIENT_SPACE.

RULE: All attributes listed as Required MUST be implemented. These attributes SHALL NOT return
PXIMC_NSUP_ATTRIBUTE.

OBSERVATION: All attributes listed as Optional MAY return PXIMC_NSUP_ATTRIBUTE.

RULE: The attribute IDs from 0xF0000000 – 0xFFFFFFFF, inclusive, are reserved for vendor-specific
attributes. Vendor-specific attributes SHALL ONLY be implemented within the designated range.

Unsigned 32-bit Integer Attributes
RULE: All unsigned 32-bit integer attribute values returned through
PXIMC_queryInterfaceInformation SHALL be represented as native 32-bit unsigned integer.

OBSERVATION: The caller of PXIMC_queryInterfaceInformation can cast the attributeValue to
an unsigned 32-bit integer and use the integer directly from the attributeValue buffer.

OBSERVATION: The exact size needed to hold an unsigned 32-bit integer attribute value is four.

OBSERVATION: IF the maxSizeOfAttributeValue is less than four, the size of a 32-bit Unsigned
Integer, THEN PXIMC_queryInterfaceInformation SHALL NOT write any bytes to the
attributeValue output buffer.

RULE: For unsigned 32-bit integer attributes, PXIMC_queryInterfaceInformation SHALL NOT write
any bytes beyond the first four bytes of the attributeValue output buffer.

RULE: For unsigned 32-bit integer attributes, the attributeValue buffer SHALL be aligned on a 32-bit
boundary.

RULE: PCI vendor IDs are defined to be 16-bits. PXIMC_U32_MANF_ID SHALL return zero in the upper two
bytes of the attribute.

RULE: The attribute PXIMC_U32_INTERFACE_STATE SHALL ONLY return PXIMC_STATE_UP if all of the
following conditions are satisfied:

• The local interface is initialized and has no errors

• The remote side of the interface is initialized and has no errors

• The local side of the interface is capable of communicating with the remote side of the interface

• The remote side of the interface is capable of communicating with the local side of the interface

In all other cases, PXIMC_U32_INTERFACE_STATE SHALL return PXIMC_STATE_DOWN.

The interpretation of the PXIMC_U32_PROTOCOL_VERSION attribute is that the upper two bytes indicate the
major version number, and the lower two bytes indicate the minor version number.
© PXI Systems Alliance 21 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
String Attributes
RULE: All string attribute values returned through PXIMC_queryInterfaceInformation SHALL be
terminated by a NULL (‘\0’) character.

RULE: The NULL (‘\0’) character counts in the total size of the attribute. The
actualSizeOfAttributeValue value SHALL include the NULL character.

RULE: All string attribute values SHALL ONLY contain bytes between 0x20 and 0x7E. Bytes 0x00 – 0x1F,
and bytes 0x7F – 0xFF SHALL NOT be part of the attributeValue output.

RULE: The terminating NULL (‘\0’) character is required on string attributes. If an attribute value exactly
fits into the attributeValue output buffer, but there is no space for the terminating NULL, the
attributeValue SHALL NOT be returned. The NULL SHALL be considered as part of the
attributeValue for computing size requirements.

3.3.1.3 PXIMC_waitForInterfaceEvent

Purpose
Wait for an event to occur on an interface.

Parameters

Return Values

PXIMC_waitForInterfaceEvent is a blocking call waiting for an event to occur on the interface.
PXIMC_waitForInterfaceEvent returns after either:

• an event listed in the reasonCode table occurs on the interface or

• the timeoutInMilliseconds duration elapses,

whichever occurs first.

Name Direction Type Description

interfaceID In uint32_t Interface on which to wait for the event.

timeoutInMilliseconds In uint32_t The amount of time to block waiting for an event
to occur on the interface.

reasonCode Out uint32_t * A bitmap of the specific event(s) that caused
PXIMC_waitForInterfaceEvent to return.

Completion Code Description

PXIMC_SUCCESS An event has occurred on the given interface.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified by interfaceID is not a valid
interface.

Warning Codes Description

PXIMC_TIMEOUT The timeoutInMilliseconds duration elapsed
without an event occurring.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 22 www.pxisa.org

3 API
timeoutInMilliseconds can be set to PXIMC_TIMEOUT_INFINITE to specify that the function should
never return due to a timeout.

If an event does occur on the interface, the reasonCode indicates what specific event(s) occurred. The
reasonCode value returned is a bitmap of events, with each bit representing a unique event. If multiple bits
are set in reasonCode, multiple events have occurred. Table 3-1 lists the valid values for the reasonCode
return value.

Implementation Requirements
RULE: For every event type, the event queue on a session SHALL be implemented as a one-deep queue of
events, with no notification of overflow of the event queue.

OBSERVATION: If multiple events of a specific event type occur while a process is not waiting for interface
events, the next time the process waits for interface events it will be notified one time that an event occurred.

OBSERVATION: If a process receives a non-zero returnCode, the process should interpret the
returnCode as one or more of the specified events has occurred since the last call to
PXIMC_waitForInterfaceEvent.

RULE: reasonCode SHALL NOT be written unless PXIMC_waitForSessionEvent returns
PXIMC_SUCCESS.

RULE: Notification of interface events is per process. Every process SHALL be treated independently
regarding notification of events.

OBSERVATION: The first time any process calls PXIMC_waitForInterfaceEvent, it will return
immediately.

RULE: Interface events SHALL be queued on behalf of every client application. The calling process need
not be waiting on an interface event while an event occurs to be notified of an event next time it calls
PXIMC_waitForInterfaceEvent.

OBSERVATION: When a process calls PXIMC_waitForInterfaceEvent it will be notified of any events
that occurred on the interface since the last time the same process called PXIMC_waitForInterfaceEvent.

OBSERVATION: Callers of PXIMC_waitForInterfaceEvent should only call this function from one
thread per process for a given interface. Calling this function from multiple threads will result in only one of
the threads being notified of any specific event.

3.3.1.4 PXIMC_findWindows

Purpose
Returns an array of unsigned integers that enumerate the PXImc "windows" present on the remote side of the
interface.

Table 3-1. reasonCode Return Values

Value Description

PXIMC_EVENT_INTERFACE_STATE_CHANGE The state of the interface has changed. Use
PXIMC_queryInterfaceInformation with attributeID
= PXIMC_U32_INTERFACE_STATE to determine the current
state of the interface.

PXIMC_EVENT_WINDOW_STATE_CHANGE The available windows on the remote system have changed. Use
PXIMC_findWindows to determine the current status of all
remote windows.
© PXI Systems Alliance 23 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Parameters

Return Values

Description
The caller of PXIMC_findWindows allocates an array of U32s, and passes the address of the array and the
size of the array as parameters. PXIMC_findWindows locates the windows present on the remote system
interface, and returns the list of windows through the windowIDs buffer. The caller can then take additional
action on one or more window, such as calling PXIMC_queryWindowInformation, to determine specific
attributes of each window. This data can be primarily used by “clients” and “peers” to determine information
on what “server” and “peer” windows exist on the remote system, what the specific characteristics are of those
“server” and “peer” sessions, and then determine whether it desires to connect to one of them as a “client” or
“peer”.

actualNumberOfWindowIDs holds the number of windows written to the windowIDs array. If insufficient
space is allocated by the user to hold the complete list of windows, actualNumberOfWindowIDs is set to
the actual number of U32 elements needed to hold the list of windows.

Implementation Requirements
RULE: PXIMC_findWindows SHALL return one window ID for every window on the remote system
represented by interface.

OBSERVATION: IF there are no sessions open on the remote system, THEN no window ID values will be
present in the windowIDs.

Name Direction Type Description

interfaceID In uint32_t Interface on which to query the available
windows.

maxNumberOfWindowIDs In uint32_t Size, in U32s, of the provided windowIDs
buffer.

windowIDs Out uint32_t * Array of windows. Each window is
represented by a single U32.

actualNumberOfWindowIDs Out uint32_t * The actual number of windows populated into
the windowIDs buffer, or the number of
windows present if insufficient space was
provided in the windowIDs array.

Completion Code Description

PXIMC_SUCCESS The windows were successfully populated into the
windowIDs parameter.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified in interfaceID is not a valid interface.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access the
system on the remote side of the interface.

PXIMC_INSUFFICIENT_SPACE The maxNumberOfWindowIDs parameter indicates that the space
available in the windowIDs buffer isn’t sufficient to hold the complete list
of windows.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 24 www.pxisa.org

3 API
RULE: Every window ID returned SHALL be the uniqueIdentifier of the window.

OBSERVATION: The window ID can be passed as a parameter during the window request as the
uniqueIdentifier parameter to request a connection to a specific window on the remote system.

OBSERVATION: All windowID values for a given interface are guaranteed to be unique.

RULE: If the remote session was created with a uniqueIdentifier of zero, the windowID value returned
SHALL be the unique identifier assigned to the session, and NOT zero.

RULE: IF an unpaired open session gets closed by PXIMC_closeWindow, THEN it shall no longer appear
as a window ID value in the windowIDs on the remote system.

OBSERVATION: It is possible that an instance of a window ID that was returned by PXIMC_findWindows
is no longer available when attempting to perform future accesses to it. This situation could exist if the
window instance was either closed or paired between the call to PXIMC_findWindows and the future
window request.

RULE: IF the maxNumberOfWindowIDs argument is insufficient to hold the entire list of windows the
actualNumberOfWindowIDs parameter SHALL be updated to contain the number of windows present. In
this case the return value SHALL be PXIMC_INSUFFICIENT_SPACE.

RULE: IF the value passed in the maxNumberOfWindowIDs argument is equal to or greater than the
minimum size needed to hold the entire list of windows, THEN the value of actualNumberOfWindowIDs
SHALL hold the number of windows written to the windowIDs array.

3.3.1.5 PXIMC_queryWindowInformation

Purpose
Allow attributes of a window to be queried.

Parameters
Name Direction Type Description

interfaceID In uint32_t Interface on which to query a window
attribute.

windowID In uint32_t The specific window of which the
attribute is being queried.

attributeID In uint32_t Attribute to query.

maxSizeOfAttributeValue In uint32_t Size, in bytes, of the attributeValue
buffer.

attributeValue Out void * The attribute value.

actualSizeOfAttributeValue Out uint32_t * The actual number of bytes written to the
attributeValue buffer, or the size of
the attribute if insufficient space was
provided in the attributeValue
buffer.
© PXI Systems Alliance 25 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Return Values

Attributes

Unsigned 8-bit Array Attributes

Unsigned 32-bit Integer Attributes

Completion Code Description

PXIMC_SUCCESS The requested attribute value was successfully
populated into the attributeID parameter.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified in interfaceID is not a valid interface.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access the system
on the remote side of the interface.

PXIMC_NSUP_ATTRIBUTE Attribute requested is not supported.

PXIMC_INVALID_WINDOW The window specified in windowID is not a valid window on the specified
interface.

PXIMC_INSUFFICIENT_SPACE The maxSizeOfAttributeValue parameter indicates that the space
available in the attributeValue buffer isn’t sufficient to hold the complete
attribute value.

PXIMC_ALIGNMENT_ERROR The attributeValue buffer does not meet the alignment criteria required by
the type of attribute requested.

Attribute Name Description Required or optional

PXIMC_U8_WINDOW_DATA The window data array of bytes supplied when the
remote window was created.

Required

Attribute Name Description Valid Return Values Required or optional

PXIMC_U32_WINDOW_
CONNECTION_TYPE

The connection type
used to create the
remote window.

PXIMC_CONNECTION_SERVER
PXIMC_CONNECTION_CLIENT
PXIMC_CONNECTION_PEER

Required

PXIMC_U32_WINDOW_
LOCATION_TYPE

The location type used
to create the remote
window.

PXIMC_LOCATION_LOGICAL
PXIMC_LOCATION_PHYSICAL

Required

PXIMC_U32_WINDOW_
PROTOCOL_NUMBER

The protocol number
supplied when the
remote window was
created.

0x0 – 0xFFFFFFFF Required
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 26 www.pxisa.org

3 API
Unsigned 64-bit Integer Attributes

Description
PXIMC_queryWindowInformation can be used to query an attribute of a requested window on the
specified interface. The type of the return value should be interpreted based on the type of attribute queried.

The specific attribute values of the windows open on the remote system can be useful to potential local
“clients” and “peers” to determine information on specific attributes of “server” and “peer” windows that
exist on the remote system. The local system can use these attribute values to determine whether it desires to
connect to one of the remote windows as a “client” or “peer”.

PXIMC_U32_WINDOW_
PAIRING_STATE

Indicates whether the
remote window has
previously been paired
with a local window,
or if it is currently
unpaired and available
for pairing.

PXIMC_WINDOW_PAIRED
PXIMC_WINDOW_UNPAIRED

Required

PXIMC_U32_SESSION_E
VENT_STATUS

On paired windows,
determine: 1) If the
local session has an
outstanding event
2) If the local session
is currently waiting on
an event, 3) If the
remote session has an
outstanding event and
4) If the remote
session is currently
waiting on an event.

0x0 – 0x0000000F
(0 – PXIMC_WINDOW_REMOTE_
EVENT_PENDING |
PXIMC_WINDOW_REMOTE_
SESSION_WAITING |
PXIMC_WINDOW_LOCAL_
EVENT_PENDING |
PXIMC_WINDOW_LOCAL_
SESSION_WAITING)

Optional

Attribute Name Description Valid Return Values Required or optional

PXIMC_U64_WINDOW_
MIN_REMOTE_SIZE

The minimum remote
window size supplied
when the remote
window was created.

0x0 – 0xFFFFFFFFFFFFFFFF Required

PXIMC_U64_WINDOW_
MAX_REMOTE_SIZE

The maximum remote
windowsize supplied
when the remote
window was created.

0x0 – 0xFFFFFFFFFFFFFFFF Required

PXIMC_U64_WINDOW_
MIN_LOCAL_SIZE

The minimum local
window size supplied
when the remote
window was created.

0x0 – 0xFFFFFFFFFFFFFFFF Required

PXIMC_U64_WINDOW_
MAX_LOCAL_SIZE

The maximum local
window size supplied
when the remote
window was created.

0x0 – 0xFFFFFFFFFFFFFFFF Required

Attribute Name Description Valid Return Values Required or optional
© PXI Systems Alliance 27 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
actualSizeOfAttributeValue holds the number of bytes written to the attributeValue buffer. If
insufficient space is allocated by the user to hold the attribute value, actualSizeOfAttributeValue is set
to the actual number of bytes needed to hold the attribute value requested.

OBSERVATION: If using PXIMC_queryWindowInformation to find information on available windows
to connect with, the PXIMC_U32_WINDOW_PAIRING_STATE must be queried to determine if the window is
currently unpaired.

Implementation Requirements
RULE: The attributes of every window SHALL match the parameter values provided to the window request
when the session was created on the remote system.

OBSERVATION: The PXIMC_WINDOW_MIN_REMOTE_SIZE, PXIMC_WINDOW_MAX_REMOTE_SIZE,
PXIMC_WINDOW_MIN_LOCAL_SIZE, and PXIMC_WINDOW_MAX_LOCAL_SIZE attribute values are the values
requested by the remote session. To connect to a given remote session, the local and remote window sizes
must be swapped for the local window request.

RULE: IF the value passed in the maxSizeOfAttributeValue argument is equal to or greater than the
minimum size needed to hold the entire attribute value, THEN the value of
actualSizeOfAttributeValue SHALL be set to the number of bytes written to the attributeValue
buffer.

RULE: IF the value passed in the maxSizeOfAttributeValue argument is less than the minimum size
needed to hold the entire attribute value, THEN the value of actualSizeOfAttributeValue SHALL be
set to the minimum number of bytes needed to hold the attribute value requested. In this case the return value
SHALL be PXIMC_INSUFFICIENT_SPACE.

Unsigned 8-bit Array Attributes
RULE: The attributeValue provided by the caller must be an allocated buffer of the size
maxSizeOfAttributeValue.

RULE: PXIMC_queryWindowInformation SHALL NOT write any more bytes in attributeValue than
is indicated by actualSizeOfAttributeValue.

Unsigned 32-bit Integer Attributes
RULE: All unsigned 32-bit integer attribute values returned through PXIMC_queryWindowInformation
SHALL be represented as native 32-bit unsigned integer.

OBSERVATION: The caller of PXIMC_queryWindowInformation can cast the attributeValue to an
unsigned 32-bit integer and use the integer directly from the attributeValue buffer.

OBSERVATION: The exact size needed to hold an unsigned 32-bit integer attribute value is four.

RULE: For unsigned 32-bit integer attributes, PXIMC_queryWindowInformation SHALL NOT write any
bytes beyond the first four bytes of the attributeValue output buffer.

RULE: For unsigned 32-bit integer attributes, the attributeValue buffer SHALL be aligned on a 32-bit
boundary.

Unsigned 64-bit Integer Attributes
RULE: All unsigned 64-bit integer attribute values returned through PXIMC_queryWindowInformation
SHALL be represented as native 64-bit unsigned integer.

OBSERVATION: The caller of PXIMC_queryWindowInformation can cast the attributeValue to an
unsigned 64-bit integer and use the integer directly from the attributeValue buffer.

OBSERVATION: The exact size needed to hold an unsigned 64-bit integer attribute value is eight.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 28 www.pxisa.org

3 API
RULE: For unsigned 64-bit integer attributes, PXIMC_queryWindowInformation SHALL NOT write any
bytes beyond the first eight bytes of the attributeValue output buffer.

RULE: For unsigned 64-bit integer attributes, the attributeValue buffer SHALL be aligned on an 8-byte
boundary.

RULE: For paired windows, the value of PXIMC_U64_WINDOW_MIN_REMOTE_SIZE SHALL be equal to the
value of PXIMC_U64_WINDOW_MAX_REMOTE_SIZE. Both values SHALL be the actual size of the remote
window.

RULE: For paired windows, the value of PXIMC_U64_WINDOW_MIN_LOCAL_SIZE SHALL be equal to the
value of PXIMC_U64_WINDOW_MAX_LOCAL_SIZE. Both values SHALL be the actual size of the local
window.

3.3.2 Sessions

3.3.2.1 Opening a Session
A session is opened by requesting a window against a specific interface. There are five functions that allow
a window to be requested. Each function is a combination of a window location type (either a physical or
logical window location) and a window connection type (either server, client, or peer).

Throughout this document there are several references to requesting a window. When this document refers to
requesting a window, it is an indication that it is generically referencing the set of functions that allow a
window to be requested. There are five specific functions that allow a window to be requested
(PXIMC_requestWindowLogicalAsServer, PXIMC_requestWindowLogicalAsClient,
PXIMC_requestWindowLogicalAsPeer, PXIMC_requestWindowPhysicalAsServer,
PXIMC_requestWindowPhysicalAsClient).

The following tables give an introduction to the differences between the different functions for requesting a
window.

Physical vs. Logical:
Window location type Description

Logical Requests a “logical” connection over the PXImc interface. A logical connection enables
a process on the local system to communicate with a process on the remote system.

Physical Requests a “physical” connection over the PXImc interface. A physical connection
either:

• Enables the local process to write to a physical entity (such as a hardware
device) on the remote system.

This operation is requesting a remote window. A remote window must be
requested. A client window connection type must be used for this type of
window.

• Enables a process on the remote system to write to a physical entity (such
as a hardware device) on the local system.

This operation is requesting a local window. A local window must be
requested. A physicalAddress must be specified in this request (the
physicalAddress parameter must be non-zero). A server window
connection type must be used for this type of window.
© PXI Systems Alliance 29 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Server vs. Client vs. Peer:

The following apply to all of the functions that allow a window to be requested:

RULE: A new session can only be opened by requesting a window.

OBSERVATION: No communication can occur over the interface immediately after a window request has
completed. Requesting a window is the first step in initiating communication across the interface.

RULE: If a session is successfully created by requesting a window, the session cannot be used from any
process other than the one that created it.

RULE: The sessionNumber argument SHALL NOT be written to UNLESS the return value is
PXIMC_SUCCESS.

RULE: The sessionNumber returned SHALL be unique.

RULE: The sessionNumber returned SHALL NOT be zero.

OBSERVATION: sessionNumbers can be reused only after the previous session has been closed.

Window connection type Description

Client Follow the client rules for session initialization and session pairing. The client rules
are:

Clients only will be paired with server sessions.
If a server on the remote system isn’t available for pairing at the time the
client requests a window, the window request will fail.

Server Follow the server rules for session initialization and session pairing. The server rules
are:

Servers will only be paired with client sessions.
If a client on the remote system isn’t available for pairing at the time the
server requests its window, the window request will succeed. The server
window request will be broadcast to the remote system, and the remote
system can become aware of the server window request by calling
PXIMC_findWindows. The properties of the server request will be
broadcast to the remote system and be queryable using
PXIMC_queryWindowInformation. Potential clients on the remote
system can use PXIMC_findWindows and
PXIMC_queryWindowInformation to be aware of the available server
session and receive the server attributes. The server is notified of session
pairing by PXIMC_waitForConnection.

Peer Follow the peer rules for session initialization and session pairing. The peer rules are:

Peers will only be paired with peer sessions.
If a peer on the remote system isn’t available for pairing at the time the local
peer requests its window, the window request will succeed. The peer
window request will be broadcast to the remote system, and the remote
system can become aware of the peer window request by calling
PXIMC_findWindows. The properties of the peer request will be broadcast
to the remote system and be queryable using
PXIMC_queryWindowInformation. Potential peers on the remote
system can use PXIMC_findWindows and
PXIMC_queryWindowInformation to be aware of the available peer
session and receive the peer attributes. The peer is notified of session
pairing by PXIMC_waitForConnection.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 30 www.pxisa.org

3 API
3.3.2.2 Session Pairing
I/O is not possible over a new session after only requesting a window. The session must first be "paired" with
a session created on the system represented by the interfaceID argument to the window request. The
remote session that is paired with the local session is referred to as the "paired session". All of the pairing
criteria must be fulfilled for two sessions to be paired.

OBSERVATION: Session Pairing may occur during the window request.

RULE: If two sessions are not precluded from being paired by the following criteria, then the two sessions
SHALL be paired together:
• Window Location Type:

• Logical will only pair with other logical. Logical SHALL NOT pair with physical.

• Physical will only pair with other physical. Physical SHALL NOT pair with logical.
• Window Connection Type:

• Peers will only pair with other peers. Peers SHALL NOT pair with servers or clients.

• Clients will only pair with servers. Clients SHALL NOT pair with clients or peers.

• Servers will only pair with clients. Servers SHALL NOT pair with servers or peers.
• Requested Window Sizes:

• There must be overlap in the requested window sizes. For the local window, take the maximum value
of minLocalSize and the remote session’s minRemoteSize. This is the net minimum window
size. Take the minimum value of the local maxLocalSize and the remote session’s
maxRemoteSize. This is the net maximum window size. If the net maximum window size is less
than the net minimum window size, there is no overlap in requested window sizes. The same
operation must be performed on the local session’s remote window and the remote session’s local
window. Sessions SHALL NOT be paired if either of the windows does not have overlap in requested
window sizes.

• The two net maximum window sizes must not be zero. If both net maximum window sizes are zero,
the two sessions SHALL NOT be paired.

• Resource Availability:

• The two net minimum window sizes must both be available to be satisfied by the resources available
to the PXImc interface. If both net minimum window sizes cannot be satisfied, the two sessions
SHALL NOT be paired.

• Some resources MUST be reserved for the connection. If both net minimum window sizes are zero,
some resources need to be allocated to one of the two windows, not to exceed the net maximum
window size. If no resources are available for either window, the two sessions SHALL NOT be
paired.

• protocolNumber: Both sessions must pass the same value for protocolNumber. Sessions with
different protocolNumbers SHALL NOT be paired.

• uniqueIdentifier:

• If both the remote session and the local session pass a non-zero value for the uniqueIdentifier,
the value must match. Non-matching non-zero uniqueIdentifiers SHALL NOT be paired.

• If connecting as CONNECTION_PEER or CONNECTION_CLIENT AND the session pairing algorithm
is being evaluated during the window request AND the value of the uniqueIdentifier passed in
is zero, THEN uniqueIdentifier is not used as a pairing criteria.

OBSERVATION: There are many timing pitfalls/race conditions that must be avoided to guarantee the
pairing criteria are followed. These need to be accounted for in implementations of the PXImc Logic Block.

OBSERVATION: It is possible that the session pairing criteria yield more than one potential match. In this
case, any one of the potential matches will actually be paired.

OBSERVATION: The windowData is never used in the session pairing criteria.
© PXI Systems Alliance 31 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
OBSERVATION: To pair a remote session with a local session, the local session’s remote window size must
be equal to the remote session’s local window size, and the local session’s local window size must be equal
to the remote session’s remote window size.

OBSERVATION: After a remote session is paired with a local session, the local session’s remote window
size will be less than or equal to the maxRemoteSize specified in the local window request.

OBSERVATION: After a remote session is paired with a local session, the local session’s remote window
size will be greater than or equal to the minRemoteSize specified in the local window request.

OBSERVATION: After a remote session is paired with a local session, the local session’s remote window
size will be less than or equal to the maxLocalSize specified in the remote window request.

OBSERVATION: After a remote session is paired with a local session, the local session’s remote window
size will be greater than or equal to the minLocalSize specified in the remote window request.

OBSERVATION: After a remote session is paired with a local session, the local session’s local window size
will be less than or equal to the maxLocalSize specified in the local window request.

OBSERVATION: After a remote session is paired with a local session, the local session’s local window size
will be greater than or equal to the minLocalSize specified in the local window request.

OBSERVATION: After a remote session is paired with a local session, the local session’s local window size
will be less than or equal to the maxRemoteSize specified in the remote window request.

OBSERVATION: After a remote session is paired with a local session, the local session’s local window size
will be greater than or equal to the minRemoteSize specified in the remote window request.

RULE: Sessions SHALL be paired with only one remote session. After a session has been paired with one
remote session, it SHALL NOT be evaluated in the future for potential pairing.

RULE: The connection SHALL be allocated as close to the net maximum window sizes as can be serviced
given the available resources to the PXImc interface.

OBSERVATION: Two sessions can be paired and be allocated any window sizes between the net maximum
window size and the net minimum window size.

RULE: Once two sessions have been paired, the resources assigned to the connection SHALL be reserved
exclusively for that connection. The resources consumed by the connection SHALL NOT be considered as
available when evaluating future session pairing.

3.3.2.3 Request Window API

3.3.2.3.1 PXIMC_requestWindowLogicalAsServer

Purpose
Initiate a request for a memory window to communicate across the PXImc interface. A logical window is
requested that follows the server rules for the request and session pairing.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 32 www.pxisa.org

3 API
Parameters

Return Values

Description
A logical window is requested that will follow the server rules for initializing the connection. The session
created by PXIMC_requestWindowLogicalAsServer will be used to communicate with a process on the
remote system. The session will only be paired with client sessions on the remote system, and the local session
will be visible to the remote system when the remote system calls PXIMC_findWindows.

Name Direction Type Description

interfaceID In uint32_t Interface on which to request the window.

protocolNumber In uint32_t The protocol that will be used to communicate
with the paired session. Refer to Section 5.,
Protocols.

maxLocalSize In uint64_t The maximum size of the local window desired.

minLocalSize In uint64_t The minimum size of the local window desired.

maxRemoteSize In uint64_t The maximum size of the remote window desired.

minRemoteSize In uint64_t The minimum size of the remote window desired.

uniqueIdentifier In uint32_t A unique ID to uniquely describe this window.

windowData In const uint8_t * A buffer to broadcast across the interface to
describe this session.

windowDataSize In uint32_t The size, in bytes, of the windowData byte array.

sessionNumber Out uint32_t * The session number that corresponds to this
request.

Completion Code Description

PXIMC_SUCCESS The window was successfully requested.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified by interfaceID is not a valid interface.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access the system
on the remote side of the interface.

PXIMC_INVALID_ARGUMENT One or more of the parameters provided is invalid, or a combination of the
arguments provided is invalid.

PXIMC_SPACE_NOT_AVAILABLE Either the minimum size of the local window, or the remote window, or both
is not available on the interfaceID interface.

PXIMC_UID_CONFLICT The uniqueIdentifier specified is already in use.
© PXI Systems Alliance 33 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Memory Windows
PXIMC_requestWindowLogicalAsServer allows for two separate windows to be requested, a local
window and a remote window. It is important to understand how these two memory windows operate to
determine which window(s) to request.

The local window is a memory range that is backed by physical memory on the local system. The remote
window is a memory range that is backed by physical memory on the remote system. After the local session
is paired with a remote session, local accesses to the remote window are translated by the PXImc interface
into an access on the remote system. For example, if the local session writes data to the remote window, the
PXImc interface receives the write, and transparently writes that data to the remote system. After the local
session is paired with a remote session, the local session’s remote window directly maps to the remote
session’s local window. The two windows (the local session’s remote window and the remote session’s local
window) are guaranteed to be the same size, and offsets within the two windows always correspond (data
written to first byte of the local session’s remote window will appear in the first byte of the remote session's
local window). Reads or writes are possible from both the local window and the remote window. Full-duplex
communication can be accomplished if only one of the two windows is used.

RECOMENDATION: For optimal performance, data to be sent to the paired session will be written to the
remote window. Writing data to the remote window "pushes" the data to the remote system; the remote
system can then read the data from its local window.

Memory Window Sizes
Two parameters are provided for both the local and remote window sizes, a minimum size parameter and a
maximum size parameter. The maximum size parameter specifies the maximum request for this session. The
maximum value is a size that the window shall not exceed. The maximum value parameter can be set to
PXIMC_MAXIMUM_WINDOW_SIZE to indicate a request to make the window as large as possible. The
maximum value parameter can be set to zero to indicate the session will not accept a window of this kind.
The maximum value parameter also indicates the preferred size of the window. The minimum size parameter
specifies the minimum requirement to be allocated for this session to allow the connection to complete. The
combination of the maximum and minimum parameter values help determine the actual size of the window.
For example, if the maximum size parameter is set to PXIMC_MAXIMUM_WINDOW_SIZE and the minimum
size parameter is zero, the remote session’s window request completely determines the size of the window.
If both the maximum and minimum size parameters are set to zero, it indicates that no window will be
allocated.

For example, if the minimum size is set to 0x400 (1KB) and the maximum size is set to 0x1000 (4KB), this
means that if 4KB is available that the window size should be 4KB, if less is available, down to 1KB, that the
connection should still complete. If any less than 1KB is available, the connection should not complete, as
less than 1KB is insufficient for this session to operate. The session is notified of the window size that is
allocated to the connection after a successful session pairing has completed by calling
PXIMC_waitForConnection.

Unique Identifier
A zero value indicates that PXImc should automatically assign some unique identifier to this session; that the
caller has no preference what unique identifier is used. A non-zero value manually assigns a specific unique
identifier to this session. Regardless of whether the unique identifier was automatically or manually assigned,
the unique identifier assigned to this session is posted as one of the windowIDs in the results of
PXIMC_findWindows on the remote system. This uniqueIdentifier allows a client to uniquely target a
specific server to initiate a connection with.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 34 www.pxisa.org

3 API
Window Data
The window data is a way to pass data about the local session to the remote system. The data passed to the
remote system is up to the caller of PXIMC_requestWindowLogicalAsServer. The data passed in through
the windowData parameter is available to the remote system through PXIMC_findWindows and
PXIMC_queryWindowInformation.

The intent of this argument is to provide data that the potential client or peer on the remote system can use to
determine whether it wants to initiate a connection with this server/peer.

The data passed in this argument MUST not be longer than 1024 bytes. The windowDataSize tells how
many bytes are present in the window data. It is not required to pass any data through the windowData
parameter. If the use of the windowData is not desired, windowDataSize can be set to zero.

Implementation Requirements
RULE: The following sequence indicates this API’s behavior SHALL:
• Validate interfaceID is a valid interface. If not, return PXIMC_INVALID_INTERFACE.
• Validate that at least one window is being requested (at least one of the two max size parameters is

non-zero). If both zero, return PXIMC_INVALID_ARGUMENT.
• Validate that the maxLocalSize parameter is greater than or equal to the minLocalSize parameter.

If it is not, return PXIMC_INVALID_ARGUMENT.
• Validate that the maxRemoteSize parameter is greater than or equal to the minRemoteSize

parameter. If it is not, return PXIMC_INVALID_ARGUMENT.
• Verify windowDataSize is less than or equal to 1024. If not, return PXIMC_INVALID_ARGUMENT.
• Determine if minimum window size(s) can be satisfied. Does the PXImc interface physically have

sufficient resources to accommodate the minimum requirements of the
PXIMC_requestWindowLogicalAsServer caller? If not, return PXIMC_SPACE_NOT_AVAILABLE.

• If the uniqueIdentifier parameter is non-zero, determine if any connection or resource on the local
system against this interface is currently using the unique identifier provided. If yes, return
PXIMC_UID_CONFLICT.

• If the uniqueIdentifier parameter is zero, determine a uniqueIdentifier value that is not
currently in-use on the local system against this interface. Assign this uniqueIdentifier to this
requested window.

• "Post" this requested window, and all its attributes (the protocolNumber, maxLocalSize,
minLocalSize, maxRemoteSize, minRemoteSize, uniqueIdentifier, and windowData) to the
remote system.

• Generate a unique session number that is not in-use for any PXImc interface. Set the sessionNumber
parameter to this new session number.

• Return PXIMC_SUCCESS.

RULE: Either the maxLocalSize or the maxRemoteSize SHALL be allowed to be zero when requesting a
window.

OBSERVATION: Initiating a connection where one of the two window sizes is zero allows the two
connected systems to share a single segment of memory physically present in one of the two systems. Both
systems can read or write the shared physical memory.

3.3.2.3.2 PXIMC_requestWindowLogicalAsClient

Purpose
Initiate a request for a memory window to communicate across the PXImc interface. A logical window is
requested that follows the client rules for the request and session pairing.
© PXI Systems Alliance 35 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Parameters

Return Values

Description
A logical window is requested that will follow the client rules for initializing the connection. The session
created by PXIMC_requestWindowLogicalAsClient will be used to communicate with a process on the
remote system. The session will only be paired with server sessions on the remote system, and the call to
PXIMC_requestWindowLogicalAsClient will fail if a compatible server is not available on the remote
system at the time PXIMC_requestWindowLogicalAsClient is called.

OBSERVATION: PXIMC_requestWindowLogicalAsClient can be used with PXIMC_findWindows
and PXIMC_queryWindowInformation. PXIMC_findWindows and
PXIMC_queryWindowInformation allows potential client applications to determine available server
sessions on the remote system, and the client application can use the data from
PXIMC_queryWindowInformation to determine the values to pass to
PXIMC_requestWindowLogicalAsClient.

Name Direction Type Description

interfaceID In uint32_t Interface on which to request the window.

protocolNumber In uint32_t The protocol that will be used to communicate with the
paired session. Refer to Section 5., Protocols.

maxLocalSize In uint64_t The maximum size of the local window desired.

minLocalSize In uint64_t The minimum size of the local window desired.

maxRemoteSize In uint64_t The maximum size of the remote window desired.

minRemoteSize In uint64_t The minimum size of the remote window desired.

uniqueIdentifier In uint32_t A unique ID to uniquely describe this window.

sessionNumber Out uint32_t * The session number that corresponds to this request.

Completion Code Description

PXIMC_SUCCESS The window was successfully requested.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified by interfaceID is not a valid interface.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access the system
on the remote side of the interface.

PXIMC_INVALID_ARGUMENT One or more of the parameters provided is invalid, or a combination of the
arguments provided is invalid.

PXIMC_SPACE_NOT_AVAILABLE Either the minimum size of the local window, or the remote window, or both
is not available on the interfaceID interface.

PXIMC_NO_PAIRING The local request could not be paired with a compatible remote session.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 36 www.pxisa.org

3 API
Memory Windows
PXIMC_requestWindowLogicalAsClient allows for two separate windows to be requested, a local
window and a remote window. It is important to understand how these two memory windows operate to
determine which window(s) to request.

The local window is a memory range that is backed by physical memory on the local system. The remote
window is a memory range that is backed by physical memory on the remote system. After the local session
is paired with a remote session, local accesses to the remote window are translated by the PXImc interface
into an access on the remote system. For example, if the local session writes data to the remote window, the
PXImc interface receives the write, and transparently writes that data to the remote system. After the local
session is paired with a remote session, the local session’s remote window directly maps to the remote
session’s local window. The two windows (the local session’s remote window and the remote session’s local
window) are guaranteed to be the same size, and offsets within the two windows always correspond (data
written to first byte of the local session’s remote window will appear in the first byte of the remote session's
local window). Reads or writes are possible from both the local window and the remote window. Full-duplex
communication can be accomplished if only one of the two windows is used.

RECOMENDATION: For optimal performance, data to be sent to the paired session will be written to the
remote window. Writing data to the remote window "pushes" the data to the remote system; the remote
system can then read the data from its local window.

Memory Window Sizes
Two parameters are provided for both the local and remote window sizes, a minimum size parameter and a
maximum size parameter. The maximum size parameter specifies the maximum request for this session. The
maximum value is a size that the window shall not exceed. The maximum value parameter can be set to
PXIMC_MAXIMUM_WINDOW_SIZE to indicate a request to make the window as large as possible. The
maximum value parameter can be set to zero to indicate the session will not accept a window of this kind.
The maximum value parameter also indicates the preferred size of the window. The minimum size parameter
specifies the minimum requirement to be allocated for this session to allow the connection to complete. The
combination of the maximum and minimum parameter values help determine the actual size of the window.
For example, if the maximum size parameter is set to PXIMC_MAXIMUM_WINDOW_SIZE and the minimum
size parameter is zero, the remote session’s window request completely determines the size of the window.
If both the maximum and minimum size parameters are set to zero, it indicates that no window will be
allocated.

For example, if the minimum size is set to 0x400 (1KB) and the maximum size is set to 0x1000 (4KB), this
means that if 4KB is available that the window size should be 4KB, if less is available, down to 1KB, that the
connection should still complete. If any less than 1KB is available, the connection should not complete, as
less than 1KB is insufficient for this session to operate. The session is notified of the window size that is
allocated to the connection after a successful session pairing has completed by calling
PXIMC_waitForConnection.

Unique Identifier
A zero value indicates the client does not want the unique identifier to be used in the session pairing
algorithm. A non-zero value indicates that the client will only connect with a server that has been assigned
the unique identifier value passed into the function.

Implementation Requirements
RULE: The following sequence indicates the behavior PXIMC_requestWindowLogicalAsClient
SHALL provide:
• Validate interfaceID is a valid interface. If not, return PXIMC_INVALID_INTERFACE.
• Validate that at least one window is being requested (at least one of the two max size parameters is

non-zero). If both zero, return PXIMC_INVALID_ARGUMENT.
© PXI Systems Alliance 37 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
• Validate that the maxLocalSize parameter is greater than or equal to the minLocalSize parameter.
If it is not, return PXIMC_INVALID_ARGUMENT.

• Validate that the maxRemoteSize parameter is greater than or equal to the minRemoteSize
parameter. If it is not, return PXIMC_INVALID_ARGUMENT.

• Determine if minimum window size(s) can be satisfied. Does the PXImc interface physically have
sufficient resources to accommodate the minimum requirements of the
PXIMC_requestWindowLogicalAsClient caller? If not, return PXIMC_SPACE_NOT_AVAILABLE.

• Run the session pairing algorithm defined in Section 3.3.2.2, Session Pairing. If the session pairing
algorithm does not successfully locate a remote session to pair with this local session, return
PXIMC_NO_PAIRING.

• Record the paired session information in internal data structures.
• Update internal available resources data structures to indicate the resources consumed by this

connection are no longer available.
• Generate a unique session number that is not in-use for any PXImc interface. Set the sessionNumber

parameter to this new session number.
• Return PXIMC_SUCCESS.

RULE: Either the maxLocalSize or the maxRemoteSize SHALL be allowed to be zero when requesting a
window.

OBSERVATION: Initiating a connection where one of the two window sizes is zero allows the two
connected systems to share a single segment of memory physically present in one of the two systems. Both
systems can read or write the shared physical memory.

3.3.2.3.3 PXIMC_requestWindowLogicalAsPeer

Purpose
Initiate a request for a memory window to communicate across the PXImc interface. A logical window is
requested that follows the peer rules for the request and session pairing.

Parameters
Name Direction Type Description

interfaceID In uint32_t Interface on which to request the window.

protocolNumber In uint32_t The protocol that will be used to communicate with
the paired session. Refer to Section 5., Protocols.

maxLocalSize In uint64_t The maximum size of the local window desired.

minLocalSize In uint64_t The minimum size of the local window desired.

maxRemoteSize In uint64_t The maximum size of the remote window desired.

minRemoteSize In uint64_t The minimum size of the remote window desired.

uniqueIdentifier In uint32_t A unique ID to uniquely describe this window.

windowData In const uint8_t * A buffer to broadcast across the interface to
describe this session.

windowDataSize In uint32_t The size, in bytes, of the windowData byte array.

sessionNumber Out uint32_t * The session number that corresponds to this
request.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 38 www.pxisa.org

3 API
Return Values

Description
A logical window is requested that will follow the peer rules for initializing the connection. The session
created by PXIMC_requestWindowLogicalAsPeer will be used to communicate with a process on the
remote system. The session will only be paired with peer sessions on the remote system, and the call to
PXIMC_requestWindowLogicalAsPeer will first attempt to locate a compatible peer session on the
remote system. If a compatible remote peer session is found, the local session will be paired with it. If a
compatible remote peer session is not found, the local session will be visible to the remote system when the
remote system calls PXIMC_findWindows.

OBSERVATION: A ‘peer’ session allows for either the remote session or the local session to be created first.
Ordering of session creation is not important when using a ‘peer’ session.

Memory Windows
PXIMC_requestWindowLogicalAsPeer allows for two separate windows to be requested, a local window
and a remote window. It is important to understand how these two memory windows operate to determine
which window(s) to request.

The local window is a memory range that is backed by physical memory on the local system. The remote
window is a memory range that is backed by physical memory on the remote system. After the local session
is paired with a remote session, local accesses to the remote window are translated by the PXImc interface
into an access on the remote system. For example, if the local session writes data to the remote window, the
PXImc interface receives the write, and transparently writes that data to the remote system. After the local
session is paired with a remote session, the local session’s remote window directly maps to the remote
session’s local window. The two windows (the local session’s remote window and the remote session’s local
window) are guaranteed to be the same size, and offsets within the two windows always correspond (data
written to first byte of the local session’s remote window will appear in the first byte of the remote session's
local window). Reads or writes are possible from both the local window and the remote window. Full-duplex
communication can be accomplished if only one of the two windows is used.

RECOMENDATION: For optimal performance, data to be sent to the paired session will be written to the
remote window. Writing data to the remote window "pushes" the data to the remote system; the remote
system can then read the data from its local window.

Completion Code Description

PXIMC_SUCCESS The window was successfully requested.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified by interfaceID is not a valid interface.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access the system
on the remote side of the interface.

PXIMC_INVALID_ARGUMENT One or more of the parameters provided is invalid, or a combination of the
arguments provided is invalid.

PXIMC_SPACE_NOT_AVAILABLE Either the minimum size of the local window, or the remote window, or both
is not available on the interfaceID interface.

PXIMC_UID_CONFLICT The uniqueIdentifier specified is already in use.
© PXI Systems Alliance 39 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Memory Window Sizes
Two parameters are provided for both the local and remote window sizes, a minimum size parameter and a
maximum size parameter. The maximum size parameter specifies the maximum request for this session. The
maximum value is a size that the window shall not exceed. The maximum value parameter can be set to
PXIMC_MAXIMUM_WINDOW_SIZE to indicate a request to make the window as large as possible. The
maximum value parameter can be set to zero to indicate the session will not accept a window of this kind.
The maximum value parameter also indicates the preferred size of the window. The minimum size parameter
specifies the minimum requirement to be allocated for this session to allow the connection to complete. The
combination of the maximum and minimum parameter values help determine the actual size of the window.
For example, if the maximum size parameter is set to PXIMC_MAXIMUM_WINDOW_SIZE and the minimum
size parameter is zero, the remote session’s window request completely determines the size of the window.
If both the maximum and minimum size parameters are set to zero, it indicates that no window will be
allocated.

For example, if the minimum size is set to 0x400 (1KB) and the maximum size is set to 0x1000 (4KB), this
means that if 4KB is available that the window size should be 4KB, if less is available, down to 1KB, that the
connection should still complete. If any less than 1KB is available, the connection should not complete, as
less than 1KB is insufficient for this session to operate. The session is notified of the window size that is
allocated to the connection after a successful session pairing has completed by calling
PXIMC_waitForConnection.

Unique Identifier
The peer connection first attempts to match against the currently available peers on the remote system. During
the matching phase, the unique identifier argument has the same rules as defined in the 'Client' description. If
the peer connection remains unpaired after the matching phase is complete, the value of the unique identifier
then is interpreted with the 'Server' description below.

Server: A zero value indicates that PXImc should automatically assign some unique identifier to this
session; that the caller has no preference what unique identifier is used. A non-zero value manually
assigns a specific unique identifier to this session. Regardless of whether the unique identifier was
automatically or manually assigned, the unique identifier assigned to this session is posted as one of the
windowIDs in the results of PXIMC_findWindows on the remote system. This uniqueIdentifier
allows a peer to uniquely target a specific peer to initiate a connection with.

Client: A zero value indicates the client does not want the unique identifier to be used in the session
pairing algorithm. A non-zero value indicates that the client will only connect with a server that has been
assigned the unique identifier value passed into the function.

Window Data
The window data is a way to pass data about the local session to the remote system. The data passed to the
remote system is up to the caller of PXIMC_requestWindowLogicalAsServer. The data passed in via the
windowData parameter is available to the remote system through PXIMC_findWindows and
PXIMC_queryWindowInformation.

The intent of this argument is to provide data that the potential client or peer on the remote system can use to
determine whether it wants to initiate a connection with this server/peer.

The data passed in this argument MUST not be longer than 1024 bytes. The windowDataSize tells how
many bytes are present in the window data. It is not required to pass any data through the windowData
parameter. If the use of the windowData is not desired, windowDataSize can be set to zero.

Implementation Requirements
RULE: The following sequence indicates the behavior PXIMC_requestWindowLogicalAsPeer SHALL
provide:
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 40 www.pxisa.org

3 API
• Validate interfaceID is a valid interface. If not, return PXIMC_INVALID_INTERFACE.
• Validate that at least one window is being requested (at least one of the two max size parameters is

non-zero). If both zero, return PXIMC_INVALID_ARGUMENT.
• Validate that the maxLocalSize parameter is greater than or equal to the minLocalSize parameter.

If it is not, return PXIMC_INVALID_ARGUMENT.
• Validate that the maxRemoteSize parameter is greater than or equal to the minRemoteSize

parameter. If it is not, return PXIMC_INVALID_ARGUMENT.
• Verify windowDataSize is less than or equal to 1024. If not, return PXIMC_INVALID_ARGUMENT.
• Determine if minimum window size(s) can be satisfied. Does the PXImc interface physically have

sufficient resources to accommodate the minimum requirements of the
PXIMC_requestWindowLogicalAsPeer caller. If not, return PXIMC_SPACE_NOT_AVAILABLE.

• Run the session pairing algorithm defined in Section 3.3.2.2, Session Pairing.
• Branch on whether the session pairing algorithm successfully locates a remote session to pair with this

local session.

IF PAIR FOUND:

• Record the paired session information in internal data structures.

• Update internal available resources data structures to indicate resources consumed by this
connection are no longer available.

• Generate a unique session number that is not in-use for any PXImc interface. Set the
sessionNumber parameter to this new session number.

• Return PXIMC_SUCCESS.

IF NO PAIR FOUND:

• If the uniqueIdentifier parameter is non-zero, determine if any connection or resource on
the local system against this interface is currently using the unique identifier provided. If yes,
return PXIMC_UID_CONFLICT.

• If the uniqueIdentifier parameter is zero, determine a uniqueIdentifier value that is
not currently in-use on the local system against this interface. Assign this uniqueIdentifier
to this requested window.

• "Post" this requested window, and all its attributes (the protocolNumber, maxLocalSize,
minLocalSize, maxRemoteSize, minRemoteSize, and windowData) to the remote system.

• Generate a unique session number that is not in-use for any PXImc interface controlled by this
PXImc Logic Block Vendor. Set the sessionNumber parameter to this new session number.

• Return PXIMC_SUCCESS.

RULE: Either the maxLocalSize or the maxRemoteSize SHALL be allowed to be zero when requesting a
window.

OBSERVATION: Initiating a connection where one of the two window sizes is zero allows the two
connected systems to share a single segment of memory physically present in one of the two systems. Both
systems can read or write the shared physical memory.

3.3.2.3.4 PXIMC_requestWindowPhysicalAsServer

Purpose
Initiate a request for a memory window to communicate across the PXImc interface. A physical window is
requested that follows the server rules for the request and session pairing.
© PXI Systems Alliance 41 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Parameters

Return Values

Description
A physical window is requested that will follow the server rules for initializing the connection. The session
created by PXIMC_requestWindowPhysicalAsServer will be used to allow remote sessions to
communicate with specific physical resource on the local system, such as a hardware device. The session will
only be paired with client sessions on the remote system, and the local session will be visible to the remote
system when the remote system calls PXIMC_findWindows.

OBSERVATION: PXIMC_requestWindowPhysicalAsServer can not be used to communicate with the
remote system. It enables the remote system to target a specific range of physical address space on the local
system.

Name Direction Type Description

interfaceID In uint32_t Interface on which to request the window.

protocolNumber In uint32_t The protocol that will be used to communicate
with the paired session. Refer to Section 5.,
Protocols.

localSize In uint64_t The size of the local window desired.

uniqueIdentifier In uint32_t A unique ID to uniquely describe this window.

physicalAddress In uint64_t The local physical address to enable as a target for
a remote session.

windowData In const uint8_t * A buffer to broadcast across the interface to
describe this session.

windowDataSize In uint32_t The size, in bytes, of the windowData byte array.

sessionNumber Out uint32_t * The session number that corresponds to this
request.

Completion Code Description

PXIMC_SUCCESS The window was successfully requested.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified by interfaceID is not a valid interface.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access
the system on the remote side of the interface.

PXIMC_INVALID_ARGUMENT One or more of the parameters provided is invalid, or a
combination of the arguments provided is invalid.

PXIMC_SPACE_NOT_AVAILABLE Either the minimum size of the local window, or the remote
window, or both is not available on the interfaceID interface.

PXIMC_UID_CONFLICT The uniqueIdentifier specified is already in use.

PXIMC_PHY_RESOURCE_NOT_AVAILABLE The physical resource requested is not available, or cannot fulfill
the minimum needs of the requested window.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 42 www.pxisa.org

3 API
Memory Windows
PXIMC_requestWindowPhysicalAsServer allows a local window to be requested. It is important to
understand how this memory window operates to determine how to use it. The local window is a memory
range that is backed by some physical entity, such as physical memory, on the local system. The location of
the local window in physical address space is specified by the physicalAddress parameter. After the local
session is paired with a remote session, when the remote session accesses its remote window, those accesses
are translated by the PXImc interface into an access on the local system. After the local session is paired with
a remote session, the remote session’s remote window directly maps to the local session’s requested local
window. The two windows (the local session’s local window and the remote session’s remote window) are
guaranteed to be the same size, and offsets within the two windows always correspond (data written to first
byte of the local remote window will appear in the first byte of the remote session's local window).

Local Window Size
The localSize parameter specifies the exact size of the local resource that the remote session will be able
to target directly. Once this session is paired with a remote session, the remote session will be able to target
the following range in local physical address space: [physicalAddress through physicalAddress +
localSize].

Physical Address
The physical address parameter is used to allow the local session to enable the remote system to directly
access a specific location within the local physical address space.

The most common scenario where the local session wants to enable direct access to a specific physical
address is if the remote system will be allowed to directly read from and write to a specific piece of hardware
within the local system. PXImc is capable of allowing a remote system to directly access local hardware
present in physical address space, such as PCI and PCIe devices. To enable the remote system to make direct
access to hardware through the PXImc interface, the base address of the physical address region for the
hardware should be provided in the physicalAddress parameter.

Unique Identifier
A zero value indicates that PXImc should automatically assign some unique identifier to this session; that the
caller has no preference what unique identifier is used. A non-zero value manually assigns a specific unique
identifier to this session. If a specific physical resource is desired to be used for this window request, its
resourceID returned from PXIMC_findPhysicalResources should be supplied for the unique identifier
parameter. If a unique identifier is specified that doesn’t correspond with physical resource ID, the user has
no preference which physical resource is used to request the window. Regardless of whether the unique
identifier was automatically or manually assigned, the unique identifier assigned to this session is posted as
one of the windowIDs in the results of PXIMC_findWindows on the remote system. This
uniqueIdentifier allows a client to uniquely target a specific server to initiate a connection with.

Window Data
The window data is a way to pass data about the local session to the remote system. The data passed to the
remote system is up to the caller of PXIMC_requestWindowLogicalAsServer. The data passed in through
the windowData parameter is available to the remote system through PXIMC_findWindows and
PXIMC_queryWindowInformation.

The intent of this argument is to provide data that the potential client or peer on the remote system can use to
determine whether it wants to initiate a connection with this server/peer.

The data passed in this argument MUST not be longer than 1024 bytes. The windowDataSize tells how
many bytes are present in the window data. It is not required to pass any data through the windowData
parameter. If the use of the windowData is not desired, windowDataSize can be set to zero.
© PXI Systems Alliance 43 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Implementation Requirements
RULE: The following sequence indicates the behavior PXIMC_requestWindowPhysicalAsServer
SHALL provide:
• Validate interfaceID is a valid interface. If not, return PXIMC_INVALID_INTERFACE.
• Verify windowDataSize is less than or equal to 1024. If not, return PXIMC_INVALID_ARGUMENT.
• Validate the localSize is nonzero. If it is zero, return PXIMC_INVALID_ARGUMENT.
• Verify the physicalAddress parameter is non-zero. If not, return PXIMC_INVALID_ARGUMENT.
• Determine if the window size can be satisfied, and if the PXImc interface has the physical capabilities

to satisfy the request. Does the PXImc interface physically have sufficient resources to accommodate
the minimum requirements of the caller? If not, return PXIMC_SPACE_NOT_AVAILABLE.

• If the uniqueIdentifier parameter is non-zero, determine if any connection on the local system
against this interface is currently using the unique identifier provided. If yes, return
PXIMC_UID_CONFLICT.

• If the uniqueIdentifier parameter is zero, determine a uniqueIdentifier value that is not
currently in-use on the local system against this interface. Assign this uniqueIdentifier to this
requested window.

• "Post" this requested window, and all its attributes (the protocolNumber, localSize,
physicalAddress, uniqueIdentifier, and windowData) to the remote system.

• Generate a unique session number that is not in-use for any PXImc interface. Set the sessionNumber
parameter to this new session number.

• Return PXIMC_SUCCESS.

3.3.2.3.5 PXIMC_requestWindowPhysicalAsClient

Purpose
Initiate a request for a memory window to communicate across the PXImc interface. A physical window is
requested that follows the client rules for the request and session pairing.

Parameters

Return Values

Name Direction Type Description

interfaceID In uint32_t Interface on which to request the window.

protocolNumber In uint32_t The protocol that will be used to communicate with the
paired session. Refer to Section 5., Protocols.

maxRemoteSize In uint64_t The maximum size of the remote window desired.

minRemoteSize In uint64_t The minimum size of the remote window desired.

uniqueIdentifier In uint32_t A unique ID to uniquely describe this window.

sessionNumber Out uint32_t * The session number that corresponds to this request.

Completion Code Description

PXIMC_SUCCESS The window was successfully requested.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 44 www.pxisa.org

3 API
Description
A physical window is requested that will follow the client rules for initializing the connection. The session
created by PXIMC_requestWindowPhysicalAsClient will be used to communicate with a physical
entity, such as a hardware device, on the remote system. The session will only be paired with server sessions
on the remote system, and the call to PXIMC_requestWindowPhysicalAsClient will fail if a compatible
server is not available on the remote system at the time PXIMC_requestWindowPhysicalAsClient is
called.

OBSERVATION: PXIMC_requestWindowPhysicalAsClient can be used with PXIMC_findWindows
and PXIMC_queryWindowInformation. PXIMC_findWindows and
PXIMC_queryWindowInformation allows potential client applications to determine available server
sessions on the remote system, and the client application can use the data from
PXIMC_queryWindowInformation to determine the values to pass to
PXIMC_requestWindowLogicalAsClient.

OBSERVATION: PXIMC_requestWindowPhysicalAsClient has both a maxRemoteSize and a
minRemoteSize because callers of PXIMC_requestWindowPhysicalAsClient may be compatible with
multiple different types of callers of PXIMC_requestWindowPhysicalAsServer. By allowing the callers
of PXIMC_requestWindowPhysicalAsClient to specify a size range, it allows the
PXIMC_requestWindowPhysicalAsServer caller to specify the exact size of the window.

Memory Windows
PXIMC_requestWindowPhysicalAsClient allows a remote window to be requested. It is important to
understand how this memory window operates to determine how to use it. The remote window is a memory
range that is backed by some physical entity, such as physical memory, on the remote system. The location
of the remote window in physical address space on the remote system depends on the paired sessions value
it supplied for the physicalAddress parameter. After the local session is paired with a remote session,
when the local session accesses its local remote window, those accesses are translated by the PXImc interface
into an access on the remote system, directly to an offset from the physical address provided by the remote
system.

Error Codes Description

PXIMC_INVALID_INTERFACE The interface specified by interfaceID is not a valid interface.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access
the system on the remote side of the interface.

PXIMC_INVALID_ARGUMENT One or more of the parameters provided is invalid, or a
combination of the arguments provided is invalid.

PXIMC_SPACE_NOT_AVAILABLE Either the minimum size of the local window, or the remote
window, or both is not available on the interfaceID interface.

PXIMC_UID_CONFLICT The uniqueIdentifier specified is already in use.

PXIMC_NO_PAIRING The local request could not be paired with a compatible remote
session.

PXIMC_PHY_RESOURCE_NOT_AVAILABLE The physical resource requested is not available, or cannot fulfill
the minimum needs of the requested window.
© PXI Systems Alliance 45 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Memory Window Sizes
Two parameters are provided for the remote window size, a minimum size parameter and a maximum size
parameter. The maximum value is a size that the window shall not exceed. The minimum size parameter
specifies the minimum requirement to be allocated for this session to allow the connection to complete. The
call to PXIMC_requestWindowPhysicalAsClient can only succeed if the maximum size parameter is
greater than or equal to the exact window size specified by the server. Also, the call to
PXIMC_requestWindowPhysicalAsClient can only succeed if the minimum size parameter is less than
or equal to the exact window size specified by the server. Regardless of the values supplied for both the
maximum and minimum parameter values, the only possible size of the remote window is the specific size
requested by the server. The session is notified of the window size that is allocated to the connection after a
successful session pairing has completed by calling PXIMC_waitForConnection.

Unique Identifier
A zero value indicates the client does not want the unique identifier to be used in the session pairing
algorithm. A non-zero value indicates that the client will only connect with a server that has been assigned
the unique identifier value passed into the function.

Implementation Requirements
RULE: The following sequence indicates the behavior PXIMC_requestWindowPhysicalAsClient
SHALL provide:
• Validate interfaceID is a valid interface. If not, return PXIMC_INVALID_INTERFACE.
• Validate that both minRemoteSize and maxRemoteSize are non-zero. If either are zero, return
PXIMC_INVALID_ARGUMENT.

• Validate that the maxRemoteSize parameter is greater than or equal to the minRemoteSize parameter.
If it is not, return PXIMC_INVALID_ARGUMENT.

• Determine if the minimum window size can be satisfied, and if the PXImc interface has the physical
capabilities to satisfy the request. Does the PXImc interface physically have sufficient resources to
accommodate the minimum requirements of the caller? If not, return PXIMC_SPACE_NOT_AVAILABLE.

• Run the session pairing algorithm defined in Section 3.3.2.2, Session Pairing. If the session pairing
algorithm does not successfully locate a remote session to pair with this local session, return
PXIMC_NO_PAIRING.

• Record the paired session information in internal data structures.
• Move the physical resource being used out of the available pool in internal data structures, and into

the consumed pool.
• Generate a unique session number that is not in-use for any PXImc interface. Set the sessionNumber

parameter to this new session number.
• Return PXIMC_SUCCESS.

3.3.2.4 Session Pairing API

3.3.2.4.1 PXIMC_waitForConnection

Purpose
Determine if the local session has been successfully paired with a remote session. If a pairing has been
established, return the information necessary to communicate with the remote session.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 46 www.pxisa.org

3 API
Parameters

Return Values

Description
PXIMC_waitForConnection is a blocking call waiting for the local session to be paired with a remote
session using the session pairing rules described in Section 3.3.2.2, Session Pairing.
PXIMC_waitForConnection returns after either
• the local session is successfully paired with a remote session or
• the timeoutInMilliseconds duration elapses,

whichever occurs first.

timeoutInMilliseconds can be set to PXIMC_TIMEOUT_INFINITE to specify that the function should
never return due to a timeout.

If the local session is successfully paired with a remote session, the remoteSizeInBytes and the
localSizeInBytes indicate the size of the remote and local windows, and the mappedRemoteAddress
and mappedLocalAddress indicate the base address of the remote and local windows.

The mappedRemoteAddress and mappedLocalAddress values can only be used from the process that
requested the window and called PXIMC_waitForConnection.

OBSERVATION: The mappedRemoteAddress and mappedLocalAddress can now be read and/or
written to communicate with the remote session. The rules for how these two addresses are used are defined
by the protocolNumber that was used to initiate the connection.

Name Direction Type Description

sessionNumber In uint32_t The session on which to wait for a connection.

timeoutInMilliseconds In uint32_t The amount of time, in milliseconds, to block
waiting for a connection.

mappedRemoteAddress Out void ** The mapped remote address that the process can
use to access the remote window.

remoteSizeInBytes Out uint64_t * The size of the remote window.

mappedLocalAddress Out void ** The mapped remote address that the process can
use to access the local window.

localSizeInBytes Out uint64_t * The size of the local window.

Completion Code Description

PXIMC_SUCCESS The session has been successfully paired with a remote session.

Error Codes Description

PXIMC_INVALID_SESSION The session specified by sessionNumber is not an open session.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access the system on
the remote side of the interface.

PXIMC_SESSION_CLOSED The session was paired and then the remote session closed its session.

Warning Codes Description

PXIMC_TIMEOUT The timeoutInMilliseconds duration elapsed without the session successfully pairing.
© PXI Systems Alliance 47 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
Implementation Requirements
RULE: The four output parameters (mappedLocalAddress, mappedRemoteAddress,
localSizeInBytes, and remoteSizeInBytes) SHALL NOT be modified unless
PXIMC_waitForConnection returns PXIMC_SUCCESS.

RULE: remoteSizeInBytes SHALL NOT be greater than the net maximum remote window size, as
defined in Section 3.3.2.2, Session Pairing.

RULE: remoteSizeInBytes SHALL NOT be less than the net minimum remote window size, as defined
in Section 3.3.2.2, Session Pairing.

RULE: localSizeInBytes SHALL NOT be greater than the net maximum local window size, as defined
in Section 3.3.2.2, Session Pairing.

RULE: localSizeInBytes SHALL NOT be less than the net minimum local window size, as defined in
Section 3.3.2.2, Session Pairing.

RULE: PXIMC_waitForConnection SHALL NOT block for timeoutInMilliseconds if an error has
occurred. It SHALL return immediately.

RULE: IF the interface goes down while a caller is blocked in PXIMC_waitForConnection,
PXIMC_waitForConnection SHALL return as soon as possible after the interface goes down, and SHALL
NOT wait until the timeout elapses.

RULE: IF the session was opened using PXIMC_requestWindowPhysicalAsServer, both the
mappedRemoteAddress and mappedLocalAddress values SHALL be returned as NULL. Although the
session was successfully paired, the local session in this case can not perform accesses to either window. The
local window initialized for this session is directed at the physicalAddress, not at physical memory.

RULE: IF the session was opened using PXIMC_requestWindowPhysicalAsClient, the
mappedLocalAddress SHALL be returned as NULL and the localSizeInBytes SHALL be zero, as no
local window can be requested with PXIMC_requestWindowPhysicalAsClient.

RULE: IF the session has no local window, the localSizeInBytes SHALL be zero, and the
mappedLocalAddress SHALL be NULL.

RULE: IF the session has no remote window, the remoteSizeInBytes SHALL be zero, and the
mappedRemoteAddress SHALL be NULL.

OBSERVATION: The two values mappedLocalAddress and mappedRemoteAddress are addresses that
the process can interact with directly. The addresses must be mapped to the processes address space.

OBSERVATION: The mappedLocalAddress and mappedRemoteAddress cannot be distributed to other
processes for use.

OBSERVATION: A value of zero can be passed to timeoutInMilliseconds to poll on whether the local
session has already been paired with a remote session.

OBSERVATION: Communication can occur between the local session and the paired session after
PXIMC_waitForConnection has successfully completed.

OBSERVATION: The only way PXIMC_waitForConnection can return with PXIMC_SUCCESS is if the
session has been paired with a remote session using the Session Pairing rules in Section 3.3.2.2, Session
Pairing.

OBSERVATION: If the maxLocalSize specified in the corresponding window request is zero, the
mappedLocalAddress and the localSizeInBytes arguments may be NULL. Similarly, if the
maxRemoteSize specified in the corresponding window request is zero, the mappedRemoteAddress and
the remoteSizeInBytes arguments may be NULL.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 48 www.pxisa.org

3 API
3.3.3 Window Physical Addresses

3.3.3.1 PXIMC_getPhysicalAddress
Purpose
Retrieve the raw physical address of the remote window for the session.

Parameters

Return Values

Description
PXIMC_getPhysicalAddress allows users to query the physical address of the session’s remote window.
This can be used to allow hardware or a kernel driver to directly source data over the connection. The session
must have previously been paired and have opened a remote window to use this function.

OBSERVATION: If direct physical address accesses are used to source data over the connection, the
mappedRemoteAddress parameter returned from PXIMC_waitForConnection should not be used. If
both are used, it’s likely that one data source will overwrite the other data source, potentially resulting in
corrupted data that is incomprehensible by the remote session.

OBSERVATION: The user of this function must take special care to not exceed the physical address
returned in remoteSizeInBytes. If data is written beyond the allocated size of remote window one or both
systems may become unstable and the results of accesses outside the remote window are undefined.

Implementation Requirements
RULE: If the PXImc Logic Block Vendor has implemented the remote window in some way where the
physical remote window is not a continuous region of physical address space, this function SHALL return an
error.

Name Direction Type Description

sessionNumber In uint32_t The session on which to wait for a connection.

physicalAddress Out uint64_t * The physical address that corresponds to the remote
window for the given sessionNumber.

Completion Code Description

PXIMC_SUCCESS The physical address has successfully been written to the physicalAddress
pointer.

Error Codes Description

PXIMC_INVALID_SESSION The session specified by sessionNumber is not an open session.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access the system on
the remote side of the interface.

PXIMC_NO_PAIRING The session specified by sessionNumber is an open session, but the session
is not paired with a remote session.

PXIMC_NO_WINDOW No remote window was allocated for the session.

PXIMC_SESSION_CLOSED The session was paired and then the remote session closed its session.
© PXI Systems Alliance 49 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
3.3.3.2 PXIMC_enableDeviceAccess
Purpose
Enable a device to directly access the remote window physical address that corresponds to a given session.

Parameters

Return Values

Name Direction Type Description

sessionNumber In uint32_t The session on which to
enable device access.

accessMode In uint32_t Mode the device will use to
access the remote window.

deviceBusNumber In uint32_t The PCI or PCI Express bus
number of the device that will
perform the access.

deviceDevNumber In uint32_t The PCI or PCI Express
device number of the device
that will perform the access.

deviceFuncNumber In uint32_t The PCI or PCI Express
function number of the device
that will perform the access.

Completion Code Description

PXIMC_SUCCESS The specified device has been enabled to read from the
session.

Error Codes Description

PXIMC_INVALID_SESSION The session specified by sessionNumber is not an
open session.

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot
currently access the system on the remote side of the
interface.

PXIMC_NO_PAIRING The session specified by sessionNumber is an open
session, but the session is not paired with a remote
session.

PXIMC_NO_WINDOW No remote window was allocated for the session.

PXIMC_SESSION_CLOSED The session was paired and then the remote session
closed its session.

PXIMC_PHY_RESOURCE_NOT_AVAILABLE Insufficient physical resources are available to satisfy
the request.

PXIMC_INVALID_ARGUMENT One or more of the parameters provided is invalid.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 50 www.pxisa.org

3 API
Description
PXIMC_enableDeviceAccess will allow a PCI or PCI Express device to directly perform reads or writes
of the remote window of the specified sessionNumber. The session must have been previously paired and
have opened a remote window to use this function. Pass in one or more of the following values in the
accessMode parameter.

RULE: accessMode values are allowed to be ‘OR’ed together. For example,
PXIMC_DEVICE_ACCESS_READ | PXIMC_DEVICE_ACCESS_WRITE is a valid value to pass into the
accessMode parameter.

RULE: PXIMC_DEVICE_ACCESS_CLEAR_ALL is a special accessMode, and should not be ‘OR’ed with any
other value.

RULE: This function must be called before attempting to access the physical address of the remote window.

OBSERVATION: Some systems do not support PCI or PCI Express devices directly reading or writing to
another PCI or PCI Express device. Other systems support this functionality, but only in a subset of possible
system configurations. This function does not address or work around those system limitations. Check with
your system vendor to ensure this functionality is supported.

OBSERVATION: Typically, after successful return of PXIMC_enableDeviceAccess, the caller will call
PXIMC_getPhysicalAddress to get the physical address to access. The remote window physical address
must be obtained before the window can be addressed.

OBSERVATION: Every call to PXIMC_enableDeviceAccess is device specific. This function must be
called once for every accessor.

OBSERVATION: By default, all devices in the system have no access, and should not perform reads or
writes without requesting access using PXIMC_enableDeviceAccess. Behavior is undefined if a device
initiates a transaction before PXIMC_enableDeviceReads has been called, or if the device initiates a
transaction type that wasn’t requested in accessMode. Therefore, PXIMC_DEVICE_ACCESS_CLEAR_ALL
needs to be used only to clear previously granted access, and is not needed as part of standard initialization.

Implementation Requirements
RULE: If any undefined/reserved bits in accessMode are set, or if any of deviceBusNumber,
deviceDevNumber, or deviceFuncNumber are out of range of the legal values defined by the PCI
specification, PXIMC_INVALID_ARGUMENT should be returned.

OBSERVATION: No validation that the requested deviceBusNumber, deviceDevNumber, and
deviceFuncNumber apply to a present device will be performed.

OBSERVATION: If a session has been enabled for device access, the device access should get implicitly
cleared when the session is closed.

Value Description

PXIMC_DEVICE_ACCESS_READ The specified device desires read access to the remote
window.

PXIMC_DEVICE_ACCESS_WRITE The specified device desires write access to the remote
window.

PXIMC_DEVICE_ACCESS_CLEAR_ALL The specified device will have all of its previously
enabled device accesses cleared.
© PXI Systems Alliance 51 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
3.3.4 Session Events

3.3.4.1 PXIMC_assertEvent

Purpose
Assert an event to the paired session.

Parameters

Return Values

Description
PXIMC_assertEvent allows for a session to trigger an PXIMC_EVENT_ASSERTED event to the remote
session. The remote session will be notified of receiving the PXIMC_EVENT_ASSERTED if it is currently
blocked in PXIMC_waitForSessionEvent, or next time it calls PXIMC_waitForSessionEvent.

PXIMC_assertEvent can be used to notify the remote session of a specific event, such as that the local
session has completed sending data to it. The rules for when an event is asserted should be defined by the
protocolNumber that was used to initiate the connection.

OBSERVATION: PXIMC_assertEvent does not block waiting for the remote session to receive the event.

OBSERVATION: Events function as if there is an event flag that can either be set or cleared. When the local
session calls PXIMC_assertEvent, it sets the remote session’s event flag. The local session can call
PXIMC_assertEvent as many times as it wants, but the flag stays set once it is in the set state. Whenever
the remote session calls, and returns from PXIMC_waitForSessionEvent, the flag is cleared. If a caller
calls PXIMC_waitForSessionEvent when the flag is cleared, PXIMC_waitForSessionEvent blocks
until the flag is in the set state.

Implementation Requirements
RULE: It SHALL be guaranteed that any data written to the remote window by the local session WILL be
present in the local window of the remote session by the time the PXIMC_EVENT_ASSERTED is propagated to
the remote session.

Name Direction Type Description

sessionNumber In uint32_t The session on which to assert the event.

Completion Code Description

PXIMC_SUCCESS An event has successfully been asserted to the remote session.

Error Codes Description

PXIMC_INTERFACE_DOWN The interface specified in interfaceID cannot currently access the system on
the remote side of the interface.

PXIMC_INVALID_SESSION The session specified by sessionNumber is not an open session.

PXIMC_NO_PAIRING The session specified by sessionNumber is an open session, but the session is
not paired with a remote session.

PXIMC_SESSION_CLOSED The session was paired and then the remote session closed its session.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 52 www.pxisa.org

3 API
OBSERVATION: Some NTB implementations may not be able to guarantee the above rule, and the
mechanism for guaranteeing the above rule may vary depending on the specific NTB implementation
selected.

RECOMMENDATION: As event latency is a primary concern for users of PXImc, the event SHOULD be
delivered to the remote session efficiently.

3.3.4.2 PXIMC_waitForSessionEvent

Purpose
Wait to receive an event from the remote session.

Parameters

Return Values

Description
PXIMC_waitForSessionEvent is a blocking call waiting for the remote session to generate some event.
PXIMC_waitForSessionEvent returns after either
• the remote session generates an event listed in the reasonCode table or
• the timeoutInMilliseconds duration elapses,

whichever occurs first.

timeoutInMilliseconds can be set to PXIMC_TIMEOUT_INFINITE to specify that the function should
never return due to a timeout.

Name Direction Type Description

sessionNumber In uint32_t The session on which to wait for a session event.

timeoutInMilliseconds In uint32_t The amount of time to block waiting for the
paired session to cause an event.

reasonCode Out uint32_t * The specific event that caused
PXIMC_waitForSessionEvent to return.

Completion Code Description

PXIMC_SUCCESS An event has occurred on the given session.

Error Codes Description

PXIMC_INVALID_SESSION The session specified by sessionNumber is not an open session.

PXIMC_NO_PAIRING The session specified by sessionNumber is an open session, but the session is
not paired with a remote session.

Warning Codes Description

PXIMC_TIMEOUT The timeoutInMilliseconds duration elapsed without an event occurring.
© PXI Systems Alliance 53 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
If the remote session does generate an event, the reasonCode indicates what specific event type occurred.
The following table lists the valid values for the reasonCode return value:

The rules for how to interpret the meaning of receiving an PXIMC_EVENT_ASSERTED event should be defined
by the protocolNumber that was used to initiate the connection.

Implementation Requirements
RULE: The event queue on a session SHALL be implemented as a one-deep queue of events, with no
notification of overflow of the event queue.

OBSERVATION: It is possible that PXIMC_EVENT_ASSERTED events are discarded if one of the paired
sessions calls PXIMC_assertEvent multiple times while the other session does not call
PXIMC_waitForSessionEvent.

OBSERVATION: If an event occurs while a process is not waiting for events, the next time the process waits
for an event it will be notified that an event occurred.

OBSERVATION: When a process calls PXIMC_waitForSessionEvent it will be notified of the last event
that occurred on the session since the last time the same process called PXIMC_waitForSessionEvent.

OBSERVATION: Callers of PXIMC_waitForSessionEvent should only call this function form one
thread per process for a given session. Calling this function from multiple threads will result in only one of
the threads being notified of any specific event.

RULE: If the paired session closes its connection, the PXIMC_EVENT_CONNECTION_CLOSED event SHALL
be the next pending event to be returned through PXIMC_waitForSessionEvent.

RULE: IF the interface is removed from the system AND there is no pending
PXIMC_EVENT_CONNECTION_CLOSED event, the application SHALL be notified by providing an
PXIMC_EVENT_CONNECTION_CLOSED event to be the next pending event to be returned through
PXIMC_waitForSessionEvent. In the case of interface removal, the
PXIMC_EVENT_CONNECTION_CLOSED event is manually created by the PXImc vendor-specific layer, and
was not generated by the remote session calling PXIMC_closeWindow.

RULE: IF an PXIMC_EVENT_CONNECTION_CLOSED event is pending, THEN it SHALL never be
overwritten by any other event type.

RULE: reasonCode SHALL NOT be written unless PXIMC_waitForSessionEvent returns
PXIMC_SUCCESS.

OBSERVATION: A value of zero can be passed to timeoutInMilliseconds to poll on whether a session
event has already occurred.

3.3.5 Closing a Session

3.3.5.1 PXIMC_closeWindow

Purpose
Closes a PXImc window.

Value Description

PXIMC_EVENT_ASSERTED The remote session generated an event.

PXIMC_EVENT_INTERFACE_DOWN The remote system with which the session was established can no
longer be accessed.

PXIMC_EVENT_CONNECTION_CLOSED The remote session closed its connection.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 54 www.pxisa.org

3 API
Parameters

Return Values

Description
PXIMC_closeWindow closes the PXImc specified by sessionNumber. PXIMC_closeWindow should be
used to close any open session, regardless of its current state. If called on a session that has been paired with
a remote session, PXIMC_closeWindow cleans up the resources used by the connection, notifies the remote
connection through an PXIMC_EVENT_CONNECTION_CLOSED event, and unpairs the two sessions. If called
on a session that has not been paired, PXIMC_closeWindow revokes the request issued through the window
request (this requested window will no longer be evaluated for pairing when remote sessions are created).

Calling PXIMC_closeWindow indicates to the PXImc software that this connection is no longer desired.

RULE: At the time PXIMC_closeWindow is called, the addresses returned by
PXIMC_waitForConnection MUST no longer be referenced or used in any way.

RULE: At the time PXIMC_closeWindow is called, the addresses returned by
PXIMC_getPhysicalAddress MUST no longer be referenced or used in any way.

If either of the above two rules are violated, either the remote or local session may become unstable. Results
of violating the above two rules are undefined.

OBSERVATION: The above rules apply to all threads using the PXImc connection. It is advised that all
threads or hardware processes performing transactions across the PXImc connection be idle prior to calling
PXIMC_closeWindow.

OBSERVATION: If a physicalAddress value was provided during the window request, calling
PXIMC_closeWindow does not guarantee the remote session will have stopped accessing the physical
address. The remote session must call PXIMC_closeWindow before the physical address will no longer be
accessed.

OBSERVATION: The local side of the session can not be cleaned up and its resources marked as available
until the local side calls PXIMC_closeWindow, even if the local side receives an
PXIMC_EVENT_CONNECTION_CLOSED event. If the local session receives an
PXIMC_EVENT_CONNECTION_CLOSED, it should still call PXIMC_closeWindow.

Implementation Requirements
OBSERVATION: One of the two sessions calling PXIMC_closeWindow doesn't completely free either the
local window or the remote window. Implementations of PXImc MUST keep the resources allocated to the
connection marked as in-use and unavailable until both the local and remote sessions have called
PXIMC_closeWindow.

OBSERVATION: It is likely that some users of the PXImc API will not call PXIMC_closeWindow.
PXIMC_closeWindow MAY be implicitly called on the user’s behalf if the process unloads the shared library
that implements the PXImc API, or if the process terminates.

Name Direction Type Description

sessionNumber In uint32_t The session to close.

Completion Code Description

PXIMC_SUCCESS The session has been successfully paired with a remote session.

Error Codes Description

PXIMC_INVALID_SESSION The session specified by sessionNumber is not an open session.
© PXI Systems Alliance 55 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

3 API
RULE: The only cases where PXIMC_closeWindow MAY be automatically called are:
• If the process unloads the shared library that implements the PXImc API
• If the process terminates

RULE: PXIMC_closeWindow SHALL NOT wait for the remote session to close before returning.

OBSERVATION: A window request after a PXIMC_closeWindow may fail until the remote session has
closed its session.

OBSERVATION: It is not possible to guarantee the user calls PXIMC_closeWindow. On process
termination, the vendor-specific kernel component must guarantee that resources allocated to the terminated
process are cleaned up.

3.3.5.2 PXIMC_cleanup

Purpose
Cleans up the PXImc environment, and closes any remaining open sessions.

Parameters
None.

Return Values

Description
Allows the PXImc libraries to close all remaining open sessions that had been previously opened by this
process, and also destroy any internal data structures that may have been allocated during execution.

This function should only be called once all sessions have stopped being used. Any use of any data provided
by any function after calling this function is undefined in behavior.

OBSERVATION: PXIMC_cleanup does not block waiting for the remote system to close all of its open
sessions.

OBSERVATION: PXImc activity can be re-established after calling PXIMC_cleanup by calling
PXIMC_findInterfaces.

Completion Code Description

PXIMC_SUCCESS The PXImc environment was cleaned up.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 56 www.pxisa.org

4 PXImc Shared Component: PXImc Dispatcher
4. PXImc Shared Component:
PXImc Dispatcher

4.1 Overview
This section describes the concept of implementing a PXImc Dispatcher, where a user application can call
into the PXImc Dispatcher, and the PXImc Dispatcher would make calls to a specific vendor’s
implementation of the PXImc API as necessary. The existence of the PXImc Dispatcher allows applications
that use the PXImc API to be written to only deal with loading and interfacing with the shared PXImc
Dispatcher, and therefore these applications will be completely portable to allow any PXImc Logic Block
vendor to provide the actual underlying interface.

The PXImc Dispatcher includes a header file (pximc.h), a dynamic library (pximc32.dll/pximc64.dll
on Windows variants, libpximc32.so/libpximc64.so on Solaris/Linux), and an import library for
compilation (pximc32.lib/pximc64.lib on Windows variants) if needed. The PXImc Dispatcher
implements all API functions defined in Section 3.3, API, to call the corresponding vendor-specific function.

4.2 Objectives
The following are the objectives of the PXImc Dispatcher:
• Maximize the portability and interoperability of applications to multiple PXImc Logic Block Vendors’

implementations beyond the benefits of implementing the standardized PXImc API.
• An application using a PXImc interface should be able to be developed in such a way that any PXImc

Logic Block vendor could supply the interface and the application would continue to function without
modification/recompilation.

• Multiple PXImc Logic Block vendors should be able to co-exist on any system, and the coexistence
should be transparent to client applications

• An application using PXImc should be able to be developed in such a way that the application can be
unaware of the number of PXImc Logic Block vendors on the system, and be able to easily interact
with any or all PXImc Logic Blocks, regardless of vendor.

4.3 Behavior
The algorithm implemented in the PXImc Dispatcher is that when it is loaded it iterates through all
vendor-specific implementations that have registered with the PXImc Dispatcher as described in Section 4.4.
The PXImc Dispatcher dynamically loads each of the vendor-specific registered implementations. The
general behavior of the PXImc Dispatcher is to route calls to one or more appropriate vendor-specific user
layer implementations. After a session is opened in the PXImc Dispatcher, all API calls that act on a session
use the session number to map the PXImc Dispatcher session number to specific instance of a vendor-specific
user layer and a session with that vendor-specific user layer. The behaviors of specific functions are defined
below.

4.3.1 PXIMC_findInterfaces
The PXImc Dispatcher serially calls all registered vendor-specific user layer implementations. It combines
the results of all implementations into a single array of interfaces.

OBSERVATION: The PXImc Dispatcher needs to perform some pointer manipulation, and return the sum
of interfaces in actualNumberOfInterfaces.

RULE: The PXImc Dispatcher SHALL maintain a mapping of interfaces to the vendor-specific
implementations that provided the interface.
© PXI Systems Alliance 57 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

4 PXImc Shared Component: PXImc Dispatcher
RULE: The PXImc Dispatcher SHALL return an error value if any of the vendor-specific implementations
returned an error. The error value returned SHALL be the first error returned by any vendor-specific
implementation.

RULE: IF no PXImc vendor-specific implementations are registered with the PXImc Dispatcher, THEN the
PXImc Dispatcher SHALL return PXIMC_NO_PROVIDER.

RULE: The PXImc Dispatcher SHALL guarantee that all interfaceID values returned by
PXIMC_findInterfaces are unique for a given process.

OBSERVATION: The PXImc Dispatcher MAY need to translate an interfaceID returned by a
vendor-specific implementation into a new, unique interfaceID to return to the caller of
PXIMC_findInterfaces.

RULE: If PXImc Dispatcher translates any interfaceID values, the PXImc Dispatcher SHALL maintain
a mapping of interfaceID values returned from the PXImc Dispatcher, to vendor-specific interfaceID
values, and the vendor-specific implementation that returned the value.

RULE: The PXImc Dispatcher SHALL NOT reuse interface numbers. If an interface is removed from the
system, the interface number used by that interface SHALL NOT be used on any interface later added to the
system.

4.3.2 Interface-based functions
The following RULES/RECOMMENDATIONS/OBSERVATIONS apply globally to all functions that have
an interface value as an input parameter, but don’t open a session. The functions that are included are:
PXIMC_queryInterfaceInformation, PXIMC_waitForInterfaceEvent, PXIMC_findWindows, and
PXIMC_queryWindowInformation.

The PXImc Dispatcher SHALL use the mapping generated in PXIMC_findInterfaces to directly call the
vendor-specific implementation that supplied the interface.

RULE: If the interfaceID argument is not present in the mapping table, the PXImc Dispatcher SHALL
internally refresh the mapping table using the same algorithm used to initially generate the table.

RULE: If after refreshing the mapping table, the interfaceID is still not present in the mapping table, the
PXImc Dispatcher SHALL return PXIMC_INVALID_INTERFACE.

RULE: If the interfaceID is present in the mapping table, the PXImc Dispatcher SHALL return the value
returned by vendor-specific implementation, and return all values of output parameters directly as returned
by the vendor-specific implementation.

4.3.3 Requesting a window
The PXImc Dispatcher SHALL use the mapping generated in PXIMC_findInterfaces to directly call the
vendor-specific implementation that supplied the interface.

RULE: If the interfaceID argument is not present in the mapping table, the PXImc Dispatcher SHALL
internally refresh the mapping table using the same algorithm used to initially generate the table.

RULE: If after refreshing the mapping table, the interfaceID is still not present in the mapping table, the
PXImc Dispatcher SHALL return PXIMC_INVALID_INTERFACE.

RULE: If the interfaceID is present in the mapping table, the PXImc Dispatcher SHALL return the value
returned by vendor-specific implementation, and return all values of output parameters directly as returned
by the vendor-specific implementation.

RULE: The PXImc Dispatcher SHALL maintain a mapping of sessionNumber to vendor-specific
implementation that returned the sessionNumber.

RULE: If the vendor-specific implementation returned a value of PXIMC_SUCCESS, the PXImc Dispatcher
SHALL add the returned sessionNumber to the mapping table.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 58 www.pxisa.org

4 PXImc Shared Component: PXImc Dispatcher
RULE: The PXImc Dispatcher SHALL guarantee that all sessionNumber values returned by any window
request are unique for a given process.

OBSERVATION: The PXImc Dispatcher MAY need to translate a sessionNumber returned by a
vendor-specific implementation into a new, unique sessionNumber to return to the window requestor.

RULE: If PXImc Dispatcher translates any sessionNumber values, the PXImc Dispatcher SHALL
maintain a mapping of sessionNumber values returned from the PXImc Dispatcher, to vendor-specific
sessionNumber values, and the vendor-specific implementation that returned the value.

4.3.4 Session-based functions
The following RULES/RECOMMENDATIONS/OBSERVATIONS apply globally to all functions that have
a sessionNumber value as an input parameter. The functions that are included are:
PXIMC_waitForConnection, PXIMC_getPhysicalAddress, PXIMC_waitForSessionEvent,
PXIMC_assertEvent, PXIMC_closeWindow.

RULE: If the sessionNumber value is not present in the mapping table generated by the window request,
the PXImc Dispatcher SHALL return error PXIMC_INVALID_SESSION.

RULE: If the sessionNumber value is present in the mapping table generated by the window request, the
PXImc Dispatcher SHALL replace the translated sessionNumber value with the vendor-specific
sessionNumber, if the sessionNumber had been translated.

RULE: If the sessionNumber value is present in the mapping table generated by the window request, the
PXImc Dispatcher SHALL directly call the corresponding function in the vendor-specific implementation
that had returned the sessionNumber.

RULE: If the sessionNumber value is present in the mapping table generated by the window request, the
PXImc Dispatcher SHALL return the value returned by the vendor-specific implementation, and return all
values of output parameters directly as returned by the vendor-specific implementation.

When a session is closed by calling PXIMC_closeWindow, the sessionNumber closed can be removed
from the mapping table.

4.3.5 PXIMC_cleanup
The PXImc Dispatcher serially calls all registered vendor-specific user layer implementations.

The PXImc Dispatcher can clear and free all of its internal mapping tables and data structures, including the
interfaceID mapping table and the sessionNumber mapping table.

4.4 Registration

4.4.1 Windows
RULE: All vendor-specific PXImc implementations SHALL ensure that the PXImc Dispatcher is installed.
If the PXImc Dispatcher is not installed, then the vendor-specific installer SHALL execute the PXImc
Dispatcher installer.

RULE: Vendor-specific PXImc implementations SHALL NOT be named either pximc32.dll or
pximc64.dll to avoid name collision with shared component.

4.4.1.1 32-bit Windows
Vendor-specific PXImc implementations must create a new registry key to register as a PXImc compliant
implementation.

The new registry key must be a subkey of

HKEY_LOCAL_MACHINE\Software\PXISA\PXIMC\CurrentVersion\
© PXI Systems Alliance 59 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

4 PXImc Shared Component: PXImc Dispatcher
The name of the new subkey SHALL be the vendor-ID assigned to the PXImc Logic Block vendor by the
PCI-SIG.

RULE: If the following registry key is not present:

HKEY_LOCAL_MACHINE\Software\PXISA\PXIMC\CurrentVersion\

The vendor-specific installer SHALL NOT create it, and SHALL error out.

OBSERVATION: The previous rule dictates that the PXImc Dispatcher installer is executed before any
vendor-specific installer.

The vendor-specific key SHALL contain the following fields:

A REG_SZ named Location that contains the absolute path to the vendor-specific PXImc dynamic library.
The Location REG_SZ must contain a path to a 32-bit vendor-specific PXImc dynamic library.

A REG_DWORD named Version that contains the PXImc version implemented by this PXImc dynamic
library, as defined in the header file. For example, a dynamic library that implements the 1.0 version of this
specification would set its Version to 0x00010000.

4.4.1.2 64-bit Windows
Vendor-specific PXImc implementations must create two new registry keys to register as a PXImc compliant
implementation.

The first new registry key must be a subkey of

HKEY_LOCAL_MACHINE\Software\PXISA\PXIMC\CurrentVersion\

The name of the new subkey SHALL be the vendor-ID assigned to the PXImc Logic Block vendor by the
PCI-SIG.

The second new registry key must be a subkey of

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\PXISA\PXIMC\CurrentVersion\

The name of the new subkey SHALL be the vendor-ID assigned to the PXImc Logic Block vendor by the
PCI-SIG.

RULE: If the following registry keys are not present:

HKEY_LOCAL_MACHINE\Software\PXISA\PXIMC\CurrentVersion\

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\PXISA\PXIMC\CurrentVersion\

The vendor-specific installer SHALL NOT create it, and SHALL error out.

OBSERVATION: The previous rule dictates that the PXImc Dispatcher installer is executed before any
vendor-specific installer.

The vendor-specific keys SHALL contain the following fields:

A REG_SZ named Location that contains the absolute path to the vendor-specific PXImc dynamic library.

A REG_DWORD named Version that contains the PXImc version implemented by this PXImc dynamic
library, as defined in the header file. For example, a dynamic library that implements the 1.0 version of this
specification would set its Version to 0x00010000.

The Location REG_SZ in HKEY_LOCAL_MACHINE\Software\PXISA\PXIMC\CurrentVersion\ must
contain a path to a 64-bit vendor-specific PXImc dynamic library.

The Location REG_SZ in
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\PXISA\PXIMC\CurrentVersion\ must contain a
path to a 32-bit vendor-specific PXImc dynamic library.

A vendor-specific installer MAY leave the value of either of the Location REG_SZ uninitialized to indicate
no dynamic library exists for the specified environment.

RULE: The registry keys registering a vendor-specific PXImc implementation SHALL be removed if the
vendor-specific implementation is removed or uninstalled from the system.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 60 www.pxisa.org

4 PXImc Shared Component: PXImc Dispatcher
4.4.2 Linux
RULE: All vendor-specific PXImc implementations SHALL ensure that the PXImc Dispatcher is installed.
If the PXImc Dispatcher is not installed, then the vendor-specific installer SHALL execute the PXImc
Dispatcher installer.

RULE: All vendor-specific PXImc implementations SHALL NOT be named either libpximc32.so or
libpximc64.so to avoid name collision with shared component.

If no vendor-specific implementations are registered when PXIMC_findInterfaces is called, all installed
vendor-specific libraries in the appropriate library directory are linked and registered.

4.5 Installation

4.5.1 32 bit Windows

TERMS
The following terms are used in this section:

<PROGRAMFILES> is the Windows Program Files directory. The default location of this directory is
C:\Program Files, but can be changed by the user at OS install time.

<PXIMCPATH> is the target directory for the PXImc Dispatcher components.

RULE: The PXImc Dispatcher installer SHALL be named “PXImc Shared Components” and SHALL have
its own entry in the Windows Add/Remove Program list.

The value of <PXIMCPATH>:

IF the registry key HKEY_LOCAL_MACHINE\SOFTWARE\PXISA\PXIMC\CurrentVersion exists and
contains the value PXIMCPATH, and this value designates a directory that exists, THEN the value of
<PXIMCPATH> SHALL be the value of this key’s PXIMCPATH string value

OTHERWISE, the default value SHALL be <PROGRAMFILES>\PXISA\PXIMC. The PXImc Dispatcher
installer SHALL allow the user to change the value of <PXIMCPATH>.

RULE: After determining the value of <PXIMCPATH>, the PXImc Dispatcher installer SHALL create a
REG_SZ named PXIMCPATH in the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\PXISA\PXIMC\CurrentVersion, IF the REG_SZ did not previously
exist. Its value SHALL be the path of <PXIMCPATH>.

RULE: The PXImc Dispatcher installer SHALL create any of the following directories that don’t already
exist:

<PXIMCPATH>

<PXIMCPATH>\WinNT

RULE: The PXImc Dispatcher 32-bit installer SHALL install the following files, unless newer versions of
the files are already installed:

<PXIMCPATH>\WinNT\pximc.h

<PXIMCPATH>\WinNT\pximc32.lib

<PXIMCPATH>\pximc32.dll

RULE: The PXImc Dispatcher installer SHALL add <PXIMCPATH> to the Windows PATH.

RULE: The PXImc Dispatcher installer SHALL create the following registry keys and values under
HKEY_LOCAL_MACHINE\Software if they didn’t previously exist:
• PXISA
• PXISA\PXIMC
• PXISA\PXIMC\CurrentVersion
© PXI Systems Alliance 61 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

4 PXImc Shared Component: PXImc Dispatcher
Value: InstallerVersion—the version number of the PXImc Dispatcher installer. If this previously
existed, the value must be updated.

Value: PXIMCPATH—<PXIMCPATH>

RULE: The 32-bit PXImc Dispatcher installer SHALL NOT install on any 64-bit Windows operating system.

RULE: The PXImc Dispatcher installer SHALL require that the user has Administrative privileges.

RULE: The PXImc Dispatcher installer SHALL provide command line options to:
• Run silently (/q).
• Set <PXIMCPATH> (provide the command line argument “PXIMCPATHDIR=<custom path>”).
• Repair the installation (/f).

RULE: The PXImc Dispatcher uninstaller SHALL detect, after removing the files it installed, whether any
remaining files or non-empty folders remain. IF no files remain, THEN the uninstaller SHALL remove all
directories and registry keys.

4.5.2 64 bit Windows
TERMS

The following terms are used in this section:

<PROGRAMFILES> is the Windows Program Files directory. The default location of this directory is
C:\Program Files, but can be changed by the user at OS install time.

<PXIMCPATH> is the target directory for the 32-bit PXImc Dispatcher components.

<PXIMCPATH64> is the target directory for the 64-bit PXImc Dispatcher components.

RULE: The PXImc Dispatcher installer for 64-bit Windows SHALL be named “PXImc Shared Components
64-bit” and SHALL have its own entry in the Windows Add/Remove Program list.

RULE: The PXImc Dispatcher 64-bit installer SHALL install both the 32-bit PXImc Dispatcher, and the
64-bit PXImc Dispatcher.

The value of <PXIMCPATH64>:

IF the registry key HKEY_LOCAL_MACHINE\SOFTWARE\PXISA\PXIMC\CurrentVersion exists and
contains the value PXIMCPATH, and this value designates a directory that exists, THEN the value of
<PXIMCPATH64> SHALL be the value of this key’s PXIMCPATH string value.

OTHERWISE, the default value SHALL be <PROGRAMFILES>\PXISA\PXIMC. The PXImc Dispatcher
installer SHALL allow the user to change the value of <PXIMCPATH64>.

RULE: After determining the value of <PXIMCPATH64>, the PXImc Dispatcher installer SHALL create a
REG_SZ named PXIMCPATH in the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\PXISA\PXIMC\CurrentVersion, IF the REG_SZ did not previously
exist. Its value SHALL be the path of <PXIMCPATH64>.

The value of <PXIMCPATH>:

IF the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\PXISA\PXIMC\CurrentVersion
exists and contains the value PXIMCPATH, and this value designates a directory that exists, THEN the value
of <PXIMCPATH> SHALL be the value of this key’s PXIMCPATH string value

OTHERWISE, the default value SHALL be <PROGRAMFILES>\PXISA\PXIMC. The PXImc Dispatcher
installer SHALL allow the user to change the value of <PXIMCPATH>.

RULE: After determining the value of <PXIMCPATH>, the PXImc Dispatcher installer SHALL create a
REG_SZ named PXIMCPATH in the registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\PXISA\PXIMC\CurrentVersion, IF the REG_SZ
did not previously exist. Its value SHALL be the path of <PXIMCPATH>.

RULE: The PXImc Dispatcher 64-bit installer SHALL create any of the following directories that don’t
already exist:
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 62 www.pxisa.org

4 PXImc Shared Component: PXImc Dispatcher
<PXIMCPATH>

<PXIMCPATH>\WinNT

<PXIMCPATH64>

<PXIMCPATH64>\Win64

RULE: The PXImc Dispatcher 64-bit installer SHALL install the following files, unless newer versions of
the files are already installed:

<PXIMCPATH>\WinNT\pximc.h

<PXIMCPATH>\WinNT\pximc32.lib

<PXIMCPATH>\pximc32.dll

<PXIMCPATH64>\Win64\pximc.h

<PXIMCPATH64>\Win64\pximc64.lib

<PXIMCPATH64>\pximc64.dll

RULE: The PXImc Dispatcher installer SHALL add <PXIMCPATH> and <PXIMCPATH64> to the Windows
PATH. If the value of <PXIMCPATH> and <PXIMCPATH64> are the same, only one value will be added to the
Windows PATH.

RULE: The PXImc Dispatcher 64-bit installer SHALL create the following registry keys and values under
HKEY_LOCAL_MACHINE\Software if they didn’t previously exist:
• PXISA

• PXISA\PXIMC

• PXISA\PXIMC\CurrentVersion

Value: InstallerVersion—the version number of the PXImc Dispatcher installer. If this previously
existed, the value must be updated.

Value: PXIMCPATH—<PXIMCPATH64>

RULE: The PXImc Dispatcher 64-bit installer SHALL create the following registry keys and values under
HKEY_LOCAL_MACHINE\Software\Wow6432Node if they didn’t previously exist:
• PXISA

• PXISA\PXIMC

• PXISA\PXIMC\CurrentVersion

Value: InstallerVersion—the version number of the PXImc Dispatcher installer. If this previously
existed, the value must be updated.

Value: PXIMCPATH—<PXIMCPATH>

RULE: The 64-bit PXImc Dispatcher installer SHALL NOT install on any 32-bit Windows operating system.

RULE: The PXImc Dispatcher installer SHALL require that the user has Administrative privileges.

RULE: The PXImc Dispatcher installer SHALL provide command line options to:
• Run silently (/q).
• Set <PXIMCPATH64> and <PXIMCPATH> (provide the command line argument(s)

“PXIMCPATH64DIR=<custom path>” and/or “PXIMCPATHDIR=<custom path>”).
• Repair the installation (/f).

RULE: The PXImc Dispatcher uninstaller SHALL detect, after removing the files it installed, whether any
remaining files or non-empty folders remain. IF no files remain, THEN the uninstaller SHALL remove all
directories and registry keys.

RULE: The PXImc Dispatcher uninstaller SHALL notify the user if cleanup isn’t completed.

4.5.3 Linux
The Linux implementation of the PXImc Dispatcher may be installed either as source or as shared libraries
compiled for the particular distribution and version of Linux. In both cases all components are installed in the
/opt/pximc directory hierarchy.
© PXI Systems Alliance 63 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

4 PXImc Shared Component: PXImc Dispatcher
RULE: The include file, /opt/pximc/include/pximc.h, MUST be installed.

RULE: For source installations, the files /opt/pximc/src/Makefile and /opt/pximc/src/pximc.c
must be installed. For binary installations, they MAY be installed.

RULE: The manpage style documentation file, /opt/pximc/share/man/man3/pximc.3.gz, must be
installed.

4.5.3.1 32-bit Linux
RULE: For source installations, /opt/pximc/src/Makefile MUST compile and install the library file,
/opt/pximc/lib/libpximc32.so.

RULE: Binary installations MUST install the library file, /opt/pximc/lib/libpximc32.so.

RULE: All vendor specific PXImc libraries MUST install symbolic links to their library files in
/opt/pximc/lib.

4.5.3.2 64-bit Linux
RULE: For source installations, /opt/pximc/src/Makefile MUST compile and install both the 32-bit
version of the library file, /opt/pximc/lib32/libpximc32.so and the 64-bit version of the library file,
/opt/pximc/lib64/pximc64.so.

RULE: Binary installations MUST install both the 32-bit version of the library file,
/opt/pximc/lib32/libpximc32.so and the 64-bit version of the library file,
/opt/pximc/lib64/pximc64.so.

RULE: The directory, /opt/pximc/lib, MUST be symbolically linked to /opt/pximc/lib64.

RULE: All vendor specific PXImc libraries MUST install symbolic links to their 32-bit library files in
/opt/pximc/lib32 and symbolic links to their 64-bit library files in /opt/pximc/lib64.

PERMISSION: A vendor MAY supply only a 32-bit or a 64-bit version of a PXImc library file.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 64 www.pxisa.org

5 Protocols

© PXI Systems Alliance 65 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

5. Protocols

5.1 Overview
Within a memory window, it must be possible for two paired sessions to be able to have a common
interpretation of the data being transferred. Additionally, paired sessions need to have a common
understanding of when to use PXIMC_assertEvent, and how to interpret a received
PXIMC_EVENT_ASSERTED. This specification does not define the format of the data within the memory
windows, but instead allows for flexibility for different interpretations. This specification also does not define
specifically when a session should send events or what it should do when one is received, but allows for any
usage that both sessions determine is ideal. The “protocol” of the connection defines how data in both the
local window and remote window should be interpreted, and specifics of how events should be used. By
requesting a window with a specific protocol value, the requester is agreeing to read and write data to the
windows and use events as defined by the protocol.

OBSERVATION: The PXImc API does not manipulate in any way any data passed across the PXImc
interface to either the local or remote window.

OBSERVATION: Because the PXImc API does not perform any data manipulation, the protocol layer needs
to account for differences in endianness across the interface. For example, if one of the systems in the
connection is big endian and the other is little endian, the protocol may need to manipulate the data before it
can be correctly interpreted when passed between the two systems.

As part of their definition of using events, protocols must only rely on a 1-deep queue being used to hold
events. A potential way to deal with event queuing is for the protocol to require the receiver of an event to
somehow acknowledge the event to the sender of the event before the sender sends an additional event.

Sessions will be paired only if the two sessions both pass the same protocol value to their window request.

OBSERVATION: By only pairing sessions of like protocols, paired sessions are guaranteed to have the same
interpretation of data within the memory window, and interpret event usage identically.

It is envisioned that this specification may be extended in the future to define some “standard” protocols. At
this time, there are no protocols that are standardized.

As no standardized protocols exist, the only way to communicate over PXImc is using a proprietary protocol,
where the rules of the protocol are specific to the processes using the protocol. To avoid protocol collisions,
the following rules should be used for implementing proprietary protocols:

RULE: The protocols in the range 0xF0000000–0xFFFFFFFF are reserved for proprietary protocols.

RULE: The protocols in the range 0xFXXXX000–0xFXXXXFFF are reserved for a specific vendor, where
‘XXXX’ is the vendor-ID assigned by the PCI-SIG.

RULE: Users of PXImc SHALL NOT use protocol values other than those within the range assigned for their
use by the above rule.

RULE: Allocation of the protocol numbers 0x00000000–0xEFFFFFFF will defined by future PXImc
protocol specifications.

6 Virtual Mesh

PXI MultiComputing Software Specification Rev. 1.1 5/31/18 66 www.pxisa.org

6. Virtual Mesh

6.1 Overview
The PXImc hardware specification defines the only valid physical topology to be a tree topology, with all
nodes connecting to a central device (Primary System Host). Virtual Mesh is the software feature that allows
two leaf nodes in the tree to send and receive data directly to and from each other. In Figure 6-1, allowing
PXImc Device1 to interact with PXImc Device2 is an example of virtual mesh.

Additionally, while a form of "indirect" virtual mesh could theoretically be instantiated by creating a 1-to-N
mapped shared memory segment located on the Primary System Host that is mapped to be accessible by, for
example, both Device1 and Device2 in Figure 6-1, there is no requirement in this specification or facility in
the API that support creating or using such a mapping.

Memory mappings in this specification are always 1-to-1 and only between the Primary System Host and
individual PXImc Devices. In other words, two or more individual PXImc Devices can ONLY communicate
with each other through individual communication of each with the Primary System Host and the PSH being
configured to coordinate its individual communications with Devices appropriately.

Figure 6-1. PXImc Tree Topology

Due to the technical complexity with supporting virtual mesh, support for this feature is not included in this
specification. Adding virtual mesh to this revision of the specification would require a standardized way of
publishing BAR addresses and sizes, interrupt register offsets and operation details, some resource manager
to assign ownership of slices of BARs, and an algorithm for interacting with memory windows between the
two devices. This complexity is significant, and is left for a future revision of the specification. A PXImc
vendor may implement virtual mesh between PXImc Devices where it provides the PXImc hardware on all
involved PXImc Devices. Such an implementation is beyond the scope of this version of the specification.

Host
Bridge

Host
Bridge

PXImc Device1
NTB

PCI family
device

PCI family
device

Host
Bridge

Primary System Host

NTB

PCI family
device

PCI family
device

PXImc Device2

A Appendix: Example Use
A. Appendix: Example Use

This appendix is included to provide examples of how the PXImc API can be used to accomplish some typical
use-cases. In each of the following use-cases, the following diagram will be used to help describe the
scenario:

Figure A-1.Example Configuration

A.1 Process to Process
Using the configuration shown in Figure A-1, a process on System 0 may want to communicate with a process
on System 1 over PXImc. This section describes some common ways this connection can be established.

The PXImc connection between System 0 and System 1 is represented by a unique interface. The interface
between the two systems is returned on each system to the process by calling PXIMC_findInterfaces.

The process on System 0 and the process on System 1 must both be able to interpret data and events passed
between the two processes in a uniform way. This interpretation of the data is indicated by the protocol used
to communicate between the two processes. To establish a connection, both processes must use the same
protocolNumber.

The processes can initialize a connection by either using a client/server relationship, or a peer/peer
relationship. If using the client/server relationship, one of the two processes must act as the “server”, being
the first to initiate the connection. The other must then act as the “client”, initiating the connection after the
server has initiated its portion of the connection. If using a peer/peer relationship, both sides initiate the
© PXI Systems Alliance 67 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
connection as a “peer”, and either process may initiate the connection prior to the other. The only differences
between client/server and peer/peer initialization models are the behaviors of the request window calls—once
the connection has been established both models are equivalent.

Each process must determine what its requirements are for local and remote windows. A process that only
writes may need only a remote window (and therefore pass zero for the two local window size parameters).
A process that reads and writes may need both a local and remote window (and therefore pass non-zero values
for both window min size parameters). The appropriate size to request depends on the amount of data to be
passed to the other process, and how quickly the paired session will consume the data.

Process-to-process connections must use Logical window connection type.

The windowData parameter is used to describe characteristics of the local process to the remote system. The
data passed in the windowData is completely up to the process. One example of data that could be passed in
the windowData is a string that describes the function of the process windowData values are only used when
connecting as a “server” or as a “peer”. These are the only types of connections that can be successfully
requested without a paired session being immediately available. The data provided in the windowData can
be read on the remote system by calling PXIMC_findWindows, and then
PXIMC_queryWindowInformation, querying attribute PXIMC_U8_WINDOW_DATA. The windowData is a
mechanism for describing the role or functionality of the server or peer session to potential client/peer
sessions prior to the client/peer initiating a connection.

The interface returned by PXIMC_findInterfaces can be used to request a memory window on that
interface. The type of window request and parameters passed to it determine the pairing behaviors, as
described above.

Both the System 1 and System 0 processes should call PXIMC_waitForConnection after requesting the
window. If PXIMC_waitForConnection returns with status PXIMC_SUCCESS, then the session has been
successfully paired. This means that the local request matched a remote request, and that the two sessions
were paired so that they can communicate. PXIMC_waitForConnection returns addresses mapped to
user-mode process addresses that the process can use to communicate with the remote process, using the rules
to interpret the data that are dictated by the protocol used to initiate the connection.

For a specific example, assume a process on System 1 will act as the “server” of the connection, and a process
on System 0 will act as the “client”. Both processes desire both a local and remote window of 4KB, but no
smaller than 1KB. Both processes will use the same protocol. The server process will describe itself to the
client process using the string “System 1 Server Process”.

In this example, the System 1 process calls PXIMC_requestWindowLogicalAsServer, and passes in the
parameters described above. After calling PXIMC_requestWindowLogicalAsServer, the System 1
process calls PXIMC_waitForConnection to wait until the local session is paired with a remote session.

After System 1 calls PXIMC_requestWindowLogicalAsServer, when the System 0 process calls
PXIMC_findWindows the window opened by System 1 will be represented in the returned windowIDs. The
details of the System 1 server window are accessible by querying the various attributes of the window by
supplying the desired attributeID to PXIMC_queryWindowInformation. System 0 can examine the
available server connections, looking for any server that has a windowData of "System 1 Server Process". It
does this by calling PXIMC_findWindows, and then querying the PXIMC_WINDOW_CONNECTION_TYPE and
PXIMC_U8_WINDOW_DATA attributes of each of the windows. It then can use the values of the other attributes
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 68 www.pxisa.org

A Appendix: Example Use
to request its window. System 0 calls PXIMC_requestWindowLogicalAsClient using the values from
PXIMC_findWindows and PXIMC_queryWindowInformation, and then calls
PXIMC_waitForConnection.

The System 1 call to PXIMC_waitForConnection will return after the System 0 process requests its
window. This indicates that the session pairing has completed with a paired session being located. The
PXIMC_waitForConnection call on System 1 provides a mappedRemoteAddress and a
mappedLocalAddress that the System 1 process can use to communicate with the paired System 0 process.

The System 0 processes call of PXIMC_waitForConnection will return immediately, because the session
pairing was completed when System 0 requested its window. Like System 1, System 0 receives a
mappedLocalAddress and mappedRemoteAddress to communicate with the System 1 process.

A sequence diagram depicting the connection initialization is provided in Figure A-2, Process to Process
Connection Initiation (numbers in double brackets indicate detailed descriptions are provided in Table A-1.)

Both processes can use PXIMC_assertEvent and PXIMC_waitForSessionEvent to cause and service
events between the two processes. A likely use of an event is to indicate that a data transmission is complete.
A possible example of usage of PXIMC_assertEvent and PXIMC_waitForSessionEvent is provided in
Figure A-3.

Once either process has completed its use of the connection, it can call PXIMC_closeWindow to terminate
the connection on its side, and to notify the remote session that the connection has been closed. When either
process receives an PXIMC_EVENT_CONNECTION_CLOSED event, it indicates the remote session closed the
connection. At this time the local process should stop sending/receiving data and also call
PXIMC_closeWindow to complete the process of terminating the connection. One possible way the
connection could be terminated is shown in Figure A-4.

Note In the following figures, the numbers in double brackets indicate detailed descriptions that are
provided in the table that follows each figure.
© PXI Systems Alliance 69 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
Figure A-2.Process to Process Connection Initiation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 70 www.pxisa.org

A Appendix: Example Use
Table A-1.Figure A-2 Footnotes

Footnote Code Explanation

[[1]] PXIMC_findInterfaces (

 100, //maxNumberOfInterfaces

 interfaceIDsOut, //interfaceIDs

 numInterfacesOut

 //actualNumberOfInterfaces

);

The System 1 Application calls
findInterfaces(). The
application allocated an array of
100 U32s in
interfacesIDsOut, and
passed the array size in
maxNumberOfInterfaces.

[[2]] {PXIMC_findInterfaces returns}

interfaceIDsOut is set to 8

numInterfacesOut is set to 1

return value is PXIMC_SUCCESS

One interface was found. Its
interface ID is ‘8’.

[[3]] PXIMC_requestWindowLogicalAsServer (

 8, //interfaceID,

 0xABCD1000, //protocolNumber

 0x1000, // maxLocalSize

 0x400, // minLocalSize

 0x1000, // maxRemoteSize

 0x400, // minRemoteSize

 1587, // uniqueIdentifier

 “System 1 Server Process”, // windowData

 23, // windowDataSize

 sessionNumberOut //sessionNumber

);

System 1 requests its server
window. It requests this window
against interface ID ‘8’, as that is
the interface found with
findInterfaces. It passes the
value ‘23’ for the
windowDataSize because its
windowData is 23 bytes long.

[[4]] {PXIMC_requestWindowLogicalAsServer returns}

sessionNumberOut is set to 15

return value is PXIMC_SUCCESS

The window request is
successful. The sessionNumber
‘15’ corresponds with this
window request. The server
window request has been posted
to the remote system.

[[5]] PXIMC_waitForConnection (

 15, // sessionNumber

 0xFFFFFFFF, // timeoutInMilliseconds

 remoteAddressOut, // mappedRemoteAddress

 remoteSizeOut, // remoteSizeInBytes

 localAddressOut, // mappedLocalAddress

 localSizeOut // localSizeInBytes

);

System 1 waits until its window
request is paired with a
compatible window request on
the remote system.
© PXI Systems Alliance 71 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
[[6]] PXIMC_findInterfaces (

 20, //maxNumberOfInterfaces

 interfaceIDsOut, //interfaceIDs

 numInterfacesOut

 //actualNumberOfInterfaces

);

The System 0 Application calls
findInterfaces(). The
application allocated an array of
20 U32s in interfacesIDsOut,
and passed the array size in
maxNumberOfInterfaces.

[[7]] {PXIMC_findInterfaces returns}

interfaceIDsOut is set to 2

numInterfacesOut is set to 1

return value is PXIMC_SUCCESS

One interface was found. Its
interface ID is ‘2’.

[[8]] PXIMC_findWindows (

 2, // interfaceID

 100, // maxNumberOfWindowIDs

 windowIDsOut, // windowIDs,

 numWindowsOut // actualNumberOfWindowIDs

);

System 0 is locating windows
present on the remote side of
interface ‘2’. The application
allocated an array of 100 U32s in
windowIDsOut, and passed the
array size in
maxNumberOfWindowIDs.

[[9]] {PXIMC_findWindows returns}

windowIDsOut is set to 1587

numWindowsOut is set to 1

return value is PXIMC_SUCCESS

One window was found. Its
window ID is ‘1587’.

[[10]] PXIMC_queryWindowInformation (

 2, // interfaceID

 1587, // windowID

 PXIMC_U8_WINDOW_DATA, // attributeID

 1024, // maxSizeOfAttributeValue

 windowDataOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘1587’ on
interface ‘2’. It is getting the
window data of this window. The
application allocated a 1024-byte
buffer at windowDataOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[11]] {PXIMC_queryWindowInformation returns}

windowDataOut is set to “System 1 Server Process”

sizeOut is set to 23

return value is PXIMC_SUCCESS

The address windowDataOut
now contains the windowData.
The sizeOut value means that
the windowData is 23 bytes
long.

Table A-1.Figure A-2 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 72 www.pxisa.org

A Appendix: Example Use
[[12]] PXIMC_queryWindowInformation (

 2, // interfaceID

 1587, // windowID

 PXIMC_U32_WINDOW_CONNECTION_TYPE,

 // attributeID

 4, // maxSizeOfAttributeValue

 connectionTypeOut, // attributeValue

 sizeOut, //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘1587’ on
interface ‘2’. It is getting the
connection type of this window.
The application allocated a single
U32, 4 bytes, at
connectionTypeOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[13]] {PXIMC_queryWindowInformation returns}

connectionTypeOut is set to PXIMC_CONNECTION_SERVER

sizeOut is set to 4

return value is PXIMC_SUCCESS

connectionTypeOut now
contains the connection type
value.

[[14]] PXIMC_queryWindowInformation (

 2, // interfaceID

 1587, // windowID

 PXIMC_U8_WINDOW_PAIRING_STATE,

 // attributeID

 4, // maxSizeOfAttributeValue

 pairingStateOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘1587’ on
interface ‘2’. It is getting the
pairing state of this window. The
application allocated a single
U32, 4 bytes, at
pairingStateOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[15]] {PXIMC_queryWindowInformation returns}

pairingStateOut is set to PXIMC_WINDOW_UNPAIRED

sizeOut is set to 4

return value is PXIMC_SUCCESS

pairingStateOut now
contains the connection type
value.

Table A-1.Figure A-2 Footnotes (Continued)

Footnote Code Explanation
© PXI Systems Alliance 73 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
[[16]] PXIMC_requestWindowLogicalAsClient (

 2, //interfaceID,

 0xABCD1000, //protocolNumber

 0x1000, // maxLocalSize

 0x400, // minLocalSize

 0x1000, // maxRemoteSize

 0x400, // minRemoteSize

 1587, // uniqueIdentifier

 sessionNumberOut //sessionNumber

);

After examining the attributes of
window ‘1587’, System 0 wants
to attempt to connect to it. It
requests a window against
interface 2, window 1587.

[[17]] {PXIMC_waitForConnection returns}

remoteAddressOut is set to process memory-mapped pointer
of the remote window

remoteSizeOut is set to set to the actual size of the remote
window

localAddressOut is set to process memory-mapped pointer of
the local window

localSizeOut is set to the actual size of the local window

return value is PXIMC_SUCCESS

System 1’s connection has been
established once System 0
requested a compatible window,
and the PXImc interface paired
the System 0 and System 1
window requests. System 1 gets
two pointers back,
remoteAddressOut and
localAddressOut, that it can
use to access the local and remote
window.

[[18]] {PXIMC_requestWindowLogicalAsClient returns}

 sessionNumberOut is set to 4

 return value is PXIMC_SUCCESS

The window request on System 0
is successful. The
sessionNumber ‘4’
corresponds with this window
request. The client window
request has been paired with a
compatible server.

Table A-1.Figure A-2 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 74 www.pxisa.org

A Appendix: Example Use
[[19]] PXIMC_waitForConnection (

 4, // sessionNumber

 0x0, //timeoutInMilliseconds

 remoteAddressOut,// mappedRemoteAddress

 remoteSizeOut, // remoteSizeInBytes

 localAddressOut, // mappedLocalAddress

 localSizeOut // localSizeInBytes

);

System 0 waits until its window
request is paired with a
compatible window request on
the remote system. Because its
client window request was
successful, it knows it has already
been paired with a compatible
server, but needs to call
waitForConnection to get the
pointers to the local and remote
windows.

[[20]] {PXIMC_waitForConnection returns}

remoteAddressOut is set to process memory-mapped pointer
of the remote window

remoteSizeOut is set to set to the actual size of the remote
window

localAddressOut is set to process memory-mapped pointer of
the local window

localSizeOut is set to the actual size of the local window

return value is PXIMC_SUCCESS

System 0’s
waitForConnection returns.
System 0 gets two pointers back,
remoteAddressOut and
localAddressOut, that it can
use to access the local and remote
window.

Table A-1.Figure A-2 Footnotes (Continued)

Footnote Code Explanation
© PXI Systems Alliance 75 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
Figure A-3.Sample I/O and Events
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 76 www.pxisa.org

A Appendix: Example Use
Table A-2.Figure A-3 Footnotes

Footnote Code Explanation

[[1]] PXIMC_waitForSessionEvent (

 15, //sessionNumber

 PXIMC_TIMEOUT_INFINITE,
//timeoutInMilliseconds

 reasonCodeOut //reasonCode

);

The System 1 Application calls
waitForSessionEvent(). The
application wants to wait until the
System 0 Application calls
assertEvent(). Because
PXIMC_TIMEOUT_INFINITE
was specified,
waitForSessionEvent will
not return until some event
occurs.

[[2]] PXIMC_assertEvent (

 4, //sessionNumber

);

System 0 calls assertEvent(),
potentially indicating that
System 0 has completed writing
some data, and it is now available
for the System 1 Application to
read.

[[3]] {PXIMC_assertEvent returns}

return value is PXIMC_SUCCESS

assertEvent() returns
successfully.

[[4]] {PXIMC_waitForSessionEvent returns}

reasonCodeOut is set to PXIMC_EVENT_ASSERTED

return value is PXIMC_SUCCESS

An event was received by
System 1, allowing
waitForSessionEvent() to
return.

[[5]] PXIMC_waitForSessionEvent (

 4, //sessionNumber

 PXIMC_TIMEOUT_INFINITE,
//timeoutInMilliseconds

 reasonCodeOut //reasonCode

);

The System 0 Application calls
waitForSessionEvent(). The
application wants to wait until the
System 1 Application calls
assertEvent(). Because
PXIMC_TIMEOUT_INFINITE
was specified,
waitForSessionEvent will
not return until some event
occurs.

[[6]] PXIMC_assertEvent (

 15, //sessionNumber

);

System 1 calls assertEvent(),
potentially indicating that
System 1 has completed writing
some data, and it is now available
for the System 0 Application to
read.

[[7]] {PXIMC_waitForSessionEvent returns}

reasonCodeOut is set to PXIMC_EVENT_ASSERTED

return value is PXIMC_SUCCESS

An event was received by
System 0, allowing
waitForSessionEvent() to
return.

[[8]] {PXIMC_assertEvent returns}

return value is PXIMC_SUCCESS

assertEvent() returns
successfully.
© PXI Systems Alliance 77 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
Figure A-4.Connection Termination

[[9]] PXIMC_assertEvent (

 15, //sessionNumber

);

System 1 calls assertEvent(),
potentially indicating that
System 1 has completed writing
some data, and it is now available
for the System 0 Application to
read.

[[10]] {PXIMC_assertEvent returns}

return value is PXIMC_SUCCESS

assertEvent() returns
successfully. Note that it isn’t
required for System 0 to have
received the event before
assertEvent can return.

[[11]] PXIMC_waitForSessionEvent (

 4, //sessionNumber

 PXIMC_TIMEOUT_INFINITE,
//timeoutInMilliseconds

 reasonCodeOut //reasonCode

);

The System 0 Application calls
waitForSessionEvent(). The
application wants to wait until the
System 1 Application calls
assertEvent(). Because
PXIMC_TIMEOUT_INFINITE
was specified,
waitForSessionEvent will
not return until some event
occurs.

[[12]] {PXIMC_waitForSessionEvent returns}

reasonCodeOut is set to PXIMC_EVENT_ASSERTED

return value is PXIMC_SUCCESS

An event was received by System
0, allowing
waitForSessionEvent() to
return. The event had been
received prior to System 0 calling
waitForSessionEvent(), so
it returned immediately.

Table A-2.Figure A-3 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 78 www.pxisa.org

A Appendix: Example Use
Table A-3.Figure A-4 Footnotes

Footnote Code Explanation

[[1]] PXIMC_waitForSessionEvent (

 15, //sessionNumber

 PXIMC_TIMEOUT_INFINITE,
//timeoutInMilliseconds

 reasonCodeOut //reasonCode

);

The System 1 Application calls
waitForSessionEvent(). The
application wants to wait until the
System 0 Application calls
assertEvent(), or until
another event occurs. Because
PXIMC_TIMEOUT_INFINITE
was specified,
waitForSessionEvent will
not return until some event
occurs.

[[2]] PXIMC_closeWindow (

 4, //sessionNumber

);

System 0 Application closes it’s
window. It no longer wants to
communicate with the System 1
Application.

[[3]] {PXIMC_closeWindow returns}

return value is PXIMC_SUCCESS

System 0 Application’s call to
close the window returns
successfully.

[[4]] {PXIMC_waitForSessionEvent returns}

reasonCodeOut is set to
PXIMC_EVENT_CONNECTION_CLOSED

return value is PXIMC_SUCCESS

An event was received by
System 1, allowing
waitForSessionEvent() to
return. System 1 can no longer
send any data to System 0.

[[5]] PXIMC_closeWindow (

 15, //sessionNumber

);

System 1 Application closes it’s
window. It must close its portion
of the window to free resources
on the interface.

[[6]] {PXIMC_closeWindow returns}

return value is PXIMC_SUCCESS

System 1 Application’s call to
close the window returns
successfully.
© PXI Systems Alliance 79 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
A.2 Process sourcing data directly to hardware
Using the configuration shown in Figure A-1, a process on System 0 may want to write data directly to the
digitizer present in System 1 over PXImc. A common scenario where this type of connection is desired is if
a process is sourcing data directly to an output device. This section describes a common way this connection
can be established.

While there is only a single process directly participating in data transactions (the process on System 0), a
process is also necessary on System 1 to establish the connection. After the connection is established, the
System 1 process is idle. The PXImc connection between System 0 and System 1 is represented by a unique
interface. The interface between the two systems is returned on each system to the process by calling
PXIMC_findInterfaces.

The process on System 0 must have the same interpretation of the data as the digitizer in System 1. As the
digitizer's interpretation of data is fixed by its register map, the System 0 process must share this data
interpretation. The interpretation of the data is indicated by the protocol used to initiate the connection. To
establish a connection, both processes must use the same protocol.

The processes can initialize a connection by using a client/server relationship. The System 1 process must act
as the "server", being the first to initiate the connection. The System 0 process must then act as the "client",
initiating the connection after the server has initiated its portion of the connection. The PXImc
implementation will select the hardware resources that best meet the requirements of the connection. The
physical resources used are determined based on the parameters of the connection request.

In the client/server initialization model, the System 1 process must be the first to request its window. The type
of window in this example is a physical window location type, as the local target of the connection is a
physical address that is manually supplied. The protocolNumber passed to the window request should be a
protocol specific to the target hardware. For example, a protocol could be defined that specifies the specific
digitizer's register map. This protocolNumber should be passed to the window request. The localSize
should be set to the size of the digitizer's base address register that System 0 will be interacting with. The
physicalAddress value should be set to the local physical address that will be targeted by System 0, which
is the digitizer base address register in this case. The uniqueIdentifier can be set to zero to allow PXImc
to assign any uniqueIdentifier to the request. The windowData can be set to any string that will enable
the client software running on System 0 to specifically identify this window. For this example, System 1 will
use "Vendor XYZ Digitizer 123".

The System 1 process is now ready to call PXIMC_requestWindowPhysicalAsServer. The interface
returned by PXIMC_findInterfaces can be used to request a memory window on that interface. This
request is made by calling PXIMC_requestWindowPhysicalAsServer. The parameters passed to
PXIMC_requestWindowPhysicalAsServer determine the exact behaviors of the window request, as
described above. The System 1 process calls PXIMC_requestWindowPhysicalAsServer using the values
chosen above.

The process on System 1 then takes the returned sessionNumber and calls PXIMC_waitForConnection
with a sufficiently large timeoutInMilliseconds value to block until the connection is complete. At this
point, the connection is just requested, but a connection has not yet been established.

The process on System 0 can call PXIMC_findWindows to see all available windows running on System 1.
After System 1 has successfully called PXIMC_requestWindowPhysicalAsServer as described above,
the server window registered by Session 1 will be represented as one of the windowIDs returned from
PXIMC_findWindows. The details of the System 1 server window are accessible by querying the various
attributes of the window by supplying the desired attributeID to PXIMC_queryWindowInformation.

In this example, System 0 is looking for any windowData with the value "Vendor XYZ Digitizer 123" and
protocolNumber that was defined for this digitizer's register map. System 0 can examine the available
server connections, looking for any server with a specific windowData and a specific protocol number by
calling PXIMC_findWindows, and then querying the PXIMC_U8_WINDOW_DATA,
PXIMC_WINDOW_CONNECTION_TYPE, PXIMC_WINDOW_PAIRING_STATE,
PXIMC_WINDOW_LOCATION_TYPE, and PXIMC_WINDOW_PROTOCOL_NUMBER attributes of each of the
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 80 www.pxisa.org

A Appendix: Example Use
windows. When it locates the window ID that has the attribute values it’s looking for, it requests its window
using the windowID for the uniqueIdentifier argument value. The System 0 request will use
PXIMC_requestWindowPhysicalAsClient. For the other parameters, it passes the protocolNumber
retrieved from PXIMC_queryWindowInformation, the exact window size retrieved from
PXIMC_queryWindowInformation for both the minRemoteSize and maxRemoteSize.

The process on System 0 then takes the returned sessionNumber and calls PXIMC_waitForConnection
with zero for the timeoutInMilliseconds parameter. As the System 0 session was paired with the
System 1 session during the PXIMC_requestWindowPhysicalAsClient call,
PXIMC_waitForConnection will successfully return, and it will supply the mappedRemoteAddress and
remoteSizeInBytes.

The process on System 1 is notified that the connection has been established because its call to
PXIMC_waitForConnection will return.

A sequence diagram depicting the connection initialization is provided in Figure A-6.

The only other role the System 1 process has is to clean up the connection when the connection is terminated.
The System 1 process can call PXIMC_waitForSessionEvent with a long timeout, and when it receives an
PXIMC_EVENT_CONNECTION_CLOSED, it should call PXIMC_closeWindow.

The System 0 process can now directly read from or write to the digitizer in System 1. If it writes data to the
mappedRemoteAddress, the data written will be written to the System 1 physicalAddress.

After the System 0 process has completed interacting with the System 1 digitizer, it must call
PXIMC_closeWindow. This will initiate clean up of the connection, and after the System 1 process also calls
PXIMC_closeWindow, the connection will be terminated and its resources freed. An example of a way the
connection could be terminated is shown in Figure A-4.
© PXI Systems Alliance 81 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
Figure A-5.Process to Hardware Connection Initiation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 82 www.pxisa.org

A Appendix: Example Use
Table A-4.Figure A-5 Footnotes

Footnote Code Explanation

[[1]] PXIMC_findInterfaces (

 100, //maxNumberOfInterfaces

 interfaceIDsOut, //interfaceIDs

 numInterfacesOut

 //actualNumberOfInterfaces

);

The System 1 Application calls
findInterfaces(). The
application allocated an array of
100 U32s in
interfacesIDsOut, and
passed the array size in
maxNumberOfInterfaces.

[[2]] {PXIMC_findInterfaces returns}

interfaceIDsOut is set to 12

numInterfacesOut is set to 1

return value is PXIMC_SUCCESS

One interface was found. Its
interface ID is ‘12’.

[[3]] {System 1 Application determines BAR address of the digitizer}

BAR Address = 0x00000000F0000000

The means for the System 1
Application to determine the
address of the digitizer BAR is
beyond the scope of this
specification.

[[4]] {System 1 Application determines BAR size of the digitizer}

BAR Size = 0x10000

The means for the System 1
Application to determine the size
of the digitizer BAR is beyond
the scope of this specification.

[[5]] PXIMC_requestWindowPhysicalAsServer (

 12, //interfaceID,

 0xABCD1000, //protocolNumber

 0x10000, // localSize

 0, // uniqueIdentifier

 0x00000000F0000000, //physicalAddress

 “Vendor XYZ Digitizer 123”,

 // windowData

 24, // windowDataSize

 sessionNumberOut //sessionNumber

);

System 1 requests its server
window. It requests this window
against interface ID ‘12’, as that
is the interface found with
findInterfaces. It passes the
value ‘24’ for the
windowDataSize because its
windowData is 24 bytes long.

[[6]] {PXIMC_requestWindowLogicalAsServer returns}

sessionNumberOut is set to 15

return value is PXIMC_SUCCESS

The window request is
successful. The sessionNumber
‘15’ corresponds with this
window request. The server
window request has been posted
to the remote system.
© PXI Systems Alliance 83 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
[[7]] PXIMC_waitForConnection (

 15, // sessionNumber

 0xFFFFFFFF, // timeoutInMilliseconds

 remoteAddressOut, // mappedRemoteAddress

 remoteSizeOut, // remoteSizeInBytes

 localAddressOut, // mappedLocalAddress

 localSizeOut // localSizeInBytes

);

System 1 waits until its window
request is paired with a
compatible window request on
the remote system.

[[8]] PXIMC_findInterfaces (

 20, //maxNumberOfInterfaces

 interfaceIDsOut, //interfaceIDs

 numInterfacesOut

 //actualNumberOfInterfaces

);

The System 0 Application calls
findInterfaces(). The
application allocated an array of
20 U32s in interfacesIDsOut,
and passed the array size in
maxNumberOfInterfaces.

[[9]] {PXIMC_findInterfaces returns}

interfaceIDsOut is set to 2

numInterfacesOut is set to 1

return value is PXIMC_SUCCESS

One interface was found. Its
interface ID is ‘2’.

[[10]] PXIMC_findWindows (

 2, // interfaceID

 100, // maxNumberOfWindowIDs

 windowIDsOut, // windowIDs,

 numWindowsOut // actualNumberOfWindowIDs

);

System 0 is locating windows
present on the remote side of
interface ‘2’. The application
allocated an array of 100 U32s in
windowIDsOut, and passed the
array size in
maxNumberOfWindowIDs.

[[11]] {PXIMC_findWindows returns}

windowIDsOut is set to 3

numWindowsOut is set to 1

return value is PXIMC_SUCCESS

One window was found. Its
window ID is ‘3’.

Table A-4.Figure A-5 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 84 www.pxisa.org

A Appendix: Example Use
[[12]] PXIMC_queryWindowInformation (

 2, // interfaceID

 3, // windowID

 PXIMC_U8_WINDOW_DATA, // attributeID

 1024, // maxSizeOfAttributeValue

 windowDataOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘3’ on interface
‘2’. It is getting the window data
of this window. The application
allocated a 1024-byte buffer at
windowDataOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[13]] {PXIMC_queryWindowInformation returns}

windowDataOut is set to “Vendor XYZ Digitizer 123”

sizeOut is set to 24

return value is PXIMC_SUCCESS

The address windowDataOut
now contains the windowData.
The sizeOut value means that
the windowData is 24 bytes
long.

[[14]] PXIMC_queryWindowInformation (

 2, // interfaceID

 3, // windowID

 PXIMC_U32_WINDOW_CONNECTION_TYPE,

 // attributeID

 4, // maxSizeOfAttributeValue

 connectionTypeOut, // attributeValue

 sizeOut, //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘3’ on interface
‘2’. It is getting the connection
type of this window. The
application allocated a single
U32, 4 bytes, at
connectionTypeOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[15]] {PXIMC_queryWindowInformation returns}

connectionTypeOut is set to PXIMC_CONNECTION_SERVER

sizeOut is set to 4

return value is PXIMC_SUCCESS

connectionTypeOut now
contains the connection type
value.

[[16]] PXIMC_queryWindowInformation (

 2, // interfaceID

 3, // windowID

 PXIMC_U8_WINDOW_PAIRING_STATE,

 // attributeID

 4, // maxSizeOfAttributeValue

 pairingStateOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘3’ on interface
‘2’. It is getting the pairing state
of this window. The application
allocated a single U32, 4 bytes, at
pairingStateOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

Table A-4.Figure A-5 Footnotes (Continued)

Footnote Code Explanation
© PXI Systems Alliance 85 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
[[17]] {PXIMC_queryWindowInformation returns}

pairingStateOut is set to PXIMC_WINDOW_UNPAIRED

sizeOut is set to 4

return value is PXIMC_SUCCESS

pairingStateOut now
contains the connection type
value.

[[18]] PXIMC_queryWindowInformation (

 2, // interfaceID

 3, // windowID

 PXIMC_U8_WINDOW_LOCATION_TYPE,

 // attributeID

 4, // maxSizeOfAttributeValue

 pairingStateOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘3’ on interface
‘2’. It is getting the location of
this window. The application
allocated a single U32, 4 bytes, at
pairingStateOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[19]] {PXIMC_queryWindowInformation returns}

pairingStateOut is set to PXIMC_LOCATION_PHYSICAL

sizeOut is set to 4

return value is PXIMC_SUCCESS

pairingStateOut now
contains the connection type
value.

[[20]] PXIMC_requestWindowPhysicalAsClient (

 2, //interfaceID,

 0xABCD1000, //protocolNumber

 0x10000, // maxRemoteSize

 0, // minRemoteSize

 3, // uniqueIdentifier

 sessionNumberOut //sessionNumber

);

After examining the attributes of
window ‘3’, System 0 wants to
attempt to connect to it. It
requests a window against
interface 2, window 3.

[[21]] {PXIMC_waitForConnection returns}

remoteAddressOut is set to NULL, as there is no remote
window

remoteSizeOut is set to set to zero, as there is no remote
window

localAddressOut is set to NULL, as the process cannot access
the local window

localSizeOut is set to zero, as the process cannot access the
local window

return value is PXIMC_SUCCESS

System 1’s connection has been
established once System 0
requested a compatible window,
and the PXImc interface paired
the System 0 and System 1
window requests. System 1
cannot use its window to perform
any I/O, but it has enabled System
0 to access the digitizer BAR.

Table A-4.Figure A-5 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 86 www.pxisa.org

A Appendix: Example Use
[[22]] {PXIMC_requestWindowLogicalAsClient returns}

 sessionNumberOut is set to 4

 return value is PXIMC_SUCCESS

The window request on System 0
is successful. The
sessionNumber ‘4’
corresponds with this window
request. The client window
request has been paired with a
compatible server.

[[23]] PXIMC_waitForConnection (

 4, // sessionNumber

 0x0, //timeoutInMilliseconds

 remoteAddressOut,// mappedRemoteAddress

 remoteSizeOut, // remoteSizeInBytes

 localAddressOut, // mappedLocalAddress

 localSizeOut // localSizeInBytes

);

System 0 waits until its window
request is paired with a
compatible window request on
the remote system. Because its
client window request was
successful, it knows it has already
been paired with a compatible
server, but needs to call
waitForConnection to get the
pointers to the remote window.

[[24]] {PXIMC_waitForConnection returns}

remoteAddressOut is set to process memory-mapped pointer
of the remote window (the digitizer BAR)

remoteSizeOut is set to set to the actual size of the remote
window (the exact size of the digitizer BAR)

localAddressOut is set to NULL, as there is no local window

localSizeOut is set to zero, as there is no local window

return value is PXIMC_SUCCESS

System 0’s
waitForConnection returns.
System 0 gets two pointers back,
remoteAddressOut and
localAddressOut, that it can
use to access the local and remote
window. localAddressOut
will be NULL and
localSizeOut will be zero, as
there is no local window. When
System 0 accesses
remoteAddressOut, the result
will be that the Digitizer BAR in
System 1 is accessed.

Table A-4.Figure A-5 Footnotes (Continued)

Footnote Code Explanation
© PXI Systems Alliance 87 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
A.3 Hardware sourcing data directly to process
Using the configuration shown in Figure A-1, a process on System 0 may want to receive data directly from
the digitizer present in System 1 over PXImc. A common scenario where this type of connection is desired is
if a process is syncing data directly from an input device. This section describes a common way this
connection can be established.

While there is only a single process directly participating in data transactions (the process on System 0), a
process is necessary on System 1 to establish the connection. After the connection is established, the System 1
process is idle. The PXImc connection between System 0 and System 1 is represented by a unique interface.
The interface between the two systems is returned on each system to the process by calling
PXIMC_findInterfaces.

The process on System 0 and the hardware on System 1 must both be able to interpret data passed between
the two systems in a uniform way. This interpretation of the data is indicated by the protocol used to
communicate between the hardware and the process. To establish a connection, both processes must use the
same protocol.

The processes can initialize a connection by either using a client/server relationship, or a peer/peer
relationship. If using the client/server relationship, one of the two processes must act as the "server", being
the first to initiate the connection. The other must then act as the "client", initiating the connection after the
server has initiated its portion of the connection. If using a peer/peer relationship, both sides initiate the
connection as a "peer", and either process may initiate the connection prior to the other. The only difference
between client/server and peer/peer initialization models is the behaviors of the window request itself—once
the connection has been established both models are equivalent. The remainder of this example assumes the
client/server initialization model is used. System 1 will initiate the connection as the "server", and System 0
as the "client".

The System 1 process must determine what its requirements are for local and remote windows. In this case,
hardware on System 1 needs to write data to System 0. Therefore the System 1 process will request a remote
window where minRemoteSize is the minimum remote window size that the hardware is able to use, and
the maxRemoteSize is the ideal remote window size for the hardware source. It is possible that the
minRemoteSize is equal to maxRemoteSize, meaning there's a specific size requirement for the remote
window. In this example, System 1 does not need a local window, so it would set minLocalSize and
maxLocalSize to zero.

This connection must use a logical window location type. This connection is a logical connection because the
connection doesn't specify a specific physical address for the local window.

The windowData parameter is used to describe characteristics of the local process to the remote system. The
data passed in the windowData is completely up to the process. One example of data that could be passed in
the windowData is a string that describes the function of the process. windowData values should only be set
by processes connecting as a "server" or as a "peer". These are the only types of connections that can be
successfully requested without a paired session being immediately available. The data provided in the
windowData can be read on the remote system by calling PXIMC_queryWindowInformation. In this
example, System 1 might pass "ABC Vendor Digitizer source" for the windowData. The System 1 process
may choose to set the uniqueIdentifier to zero, and allow the PXImc interface to select a
uniqueIdentifier on its behalf.

The System 1 process is now ready to call PXIMC_requestWindowLogicalAsServer. The interface
returned by PXIMC_findInterfaces can be used to request a memory window on that interface. This
request is made by calling PXIMC_requestWindowLogicalAsServer. The parameters passed to
PXIMC_requestWindowLogicalAsServer determine the exact behaviors of the window request, as
described above. System 1 calls PXIMC_requestWindowLogicalAsServer using the values chosen
above.

The process likely should call PXIMC_waitForConnection after requesting its window. If
PXIMC_waitForConnection returns with status PXIMC_SUCCESS, the session has been successfully
paired. This means that the local request matched a remote request, and that the two sessions were paired so
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 88 www.pxisa.org

A Appendix: Example Use
that they can communicate. PXIMC_waitForConnection returns addresses mapped to user-mode process
addresses that the process can use to communicate with the remote process, using the rules to interpret the
data that are dictated by the protocol used to initiate the connection.

The System 0 process can use the interfaceID returned from PXIMC_findInterfaces to call
PXIMC_findWindows. It can use the list of windowIDs returned to pass them each to
PXIMC_queryWindowInformation querying attribute PXIMC_WINDOW_CONNECTION_TYPE to determine
if any server connections are available on the interface, and if so, if the System 0 process is compatible with
them. The likely way the System 0 process determines compatibility is through protocolNumber being run
on the server session, and also the windowData that the server session initialized its connection with. In this
example, the System 0 process is looking for a windowData of "ABC Vendor Digitizer source". It will find
that window using PXIMC_findWindows after the System 1 process has successfully called
PXIMC_requestWindowLogicalAsServer as described above. System 0 can then use the window ID
assigned to that session, also returned by PXIMC_findWindows, to connect specifically to associated session
on System 1 by passing the windowID as the uniqueIdentifier value when requesting it’s window.

System 0 can use all of the attribute values directly from PXIMC_queryWindowInformation. In this
example, it would set zero for both minRemoteSize and maxRemoteSize, and set minLocalSize and
maxLocalSize to the values from the remote window that it receives when querying the
PXIMC_WINDOW_MIN_REMOTE_SIZE and PXIMC_WINDOW_MAX_REMOTE_SIZE attributes from
PXIMC_queryWindowInformation. The window connection type is Logical, and the window connection
type is Client, the protocolNumber must be the same number used on System 1, and the windowData can
be set to NULL. The System 0 process then calls PXIMC_requestWindowLogicalAsClient with these
parameter values.

When the System 0 process calls PXIMC_requestWindowLogicalAsClient, the session pairing algorithm
is executed. As the System 0 request will be paired with the System 1 request, System 1's call to
PXIMC_waitForConnection will now return. Assuming System 0 also calls
PXIMC_waitForConnection immediately after requesting its window, it would also return. The System 0
process now has the address, the mappedLocalAddress returned from PXIMC_waitForConnection, that
the System 1 digitizer will write data to.

Up to this point, this connection initialization has been equivalent to establishing a process-to-process
connection.

To allow the System 1 digitizer to source data to the System 0 process, the System 1 process must now call
PXIMC_getPhysicalAddress. This function returns the physical address that corresponds to the remote
window. The System 1 process must now communicate with the digitizer to configure it with the
physicalAddress that the digitizer can perform writes to. This configuration of the digitizer is specific to
the vendor of the hardware, and is not covered by this specification.

A sequence diagram depicting the connection initialization is provided in Figure A-7.

The System 1 process has completed its initialization of the connection. The only other role the System 1
process has is to clean up the connection when the connection is terminated. The System 1 process can call
PXIMC_waitForSessionEvent with a long timeout, and when it receives an
PXIMC_EVENT_CONNECTION_CLOSED, it should call PXIMC_closeWindow.

Once the System 1 digitizer is programmed with the physical address, it can perform writes to the physical
address. Any writes to the physical address will be received by the PXImc interface, which will write the data
to the mappedLocalAddress for the System 0 process to read.

The System 1 digitizer has no way to directly assert an event or cause an interrupt on System 0. The System 1
process can call PXIMC_assertEvent at any time to cause the System 0 process to return from
PXIMC_waitForSessionEvent.

After System 0 has completed communication with the System 1 digitizer, it calls PXIMC_closeWindow.
This will cause the System 1 process PXIMC_waitForSessionEvent call to return, when it can then also
call PXIMC_closeWindow to complete the PXIMC_cleanup of the connection. An example of connection
termination is shown in Figure A-4.
© PXI Systems Alliance 89 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
Figure A-6.Hardware to Process Connection Initiation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 90 www.pxisa.org

A Appendix: Example Use
Table A-5.Figure A-6 Footnotes

Footnote Code Explanation

[[1]] PXIMC_findInterfaces (

 100, //maxNumberOfInterfaces

 interfaceIDsOut, //interfaceIDs

 numInterfacesOut

 //actualNumberOfInterfaces

);

The System 1 Application calls
findInterfaces(). The
application allocated an array of
100 U32s in
interfacesIDsOut, and
passed the array size in
maxNumberOfInterfaces.

[[2]] {PXIMC_findInterfaces returns}

interfaceIDsOut is set to 8

numInterfacesOut is set to 1

return value is PXIMC_SUCCESS

One interface was found. Its
interface ID is ‘8’.

[[3]] PXIMC_requestWindowLogicalAsServer (

 8, //interfaceID,

 0xABCD1000, //protocolNumber

 0, // maxLocalSize

 0, // minLocalSize

 0x1000, // maxRemoteSize

 0x400, // minRemoteSize

 0, // uniqueIdentifier

 “ABC Vendor Digitizer Source”,

 // windowData

 27, // windowDataSize

 sessionNumberOut //sessionNumber

);

System 1 requests its server
window. It requests this window
against interface ID ‘8’, as that is
the interface found with
findInterfaces. It passes the
value ‘27’ for the
windowDataSize because its
windowData is 27 bytes long.

[[4]] {PXIMC_requestWindowLogicalAsServer returns}

sessionNumberOut is set to 15

return value is PXIMC_SUCCESS

The window request is
successful. The sessionNumber
‘15’ corresponds with this
window request. The server
window request has been posted
to the remote system.

[[5]] PXIMC_waitForConnection (

 15, // sessionNumber

 0xFFFFFFFF, // timeoutInMilliseconds

 remoteAddressOut, // mappedRemoteAddress

 remoteSizeOut, // remoteSizeInBytes

 localAddressOut, // mappedLocalAddress

 localSizeOut // localSizeInBytes

);

System 1 waits until its window
request is paired with a
compatible window request on
the remote system.
© PXI Systems Alliance 91 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
[[6]] PXIMC_findInterfaces (

 20, //maxNumberOfInterfaces

 interfaceIDsOut, //interfaceIDs

 numInterfacesOut

 //actualNumberOfInterfaces

);

The System 0 Application calls
findInterfaces(). The
application allocated an array of
20 U32s in interfacesIDsOut,
and passed the array size in
maxNumberOfInterfaces.

[[7]] {PXIMC_findInterfaces returns}

interfaceIDsOut is set to 2

numInterfacesOut is set to 1

return value is PXIMC_SUCCESS

One interface was found. Its
interface ID is ‘2’.

[[8]] PXIMC_findWindows (

 2, // interfaceID

 100, // maxNumberOfWindowIDs

 windowIDsOut, // windowIDs,

 numWindowsOut // actualNumberOfWindowIDs

);

System 0 is locating windows
present on the remote side of
interface ‘2’. The application
allocated an array of 100 U32s in
windowIDsOut, and passed the
array size in
maxNumberOfWindowIDs.

[[9]] {PXIMC_findWindows returns}

windowIDsOut is set to 1587

numWindowsOut is set to 1

return value is PXIMC_SUCCESS

One window was found. Its
window ID is ‘1587’.

[[10]] PXIMC_queryWindowInformation (

 2, // interfaceID

 1587, // windowID

 PXIMC_U8_WINDOW_DATA, // attributeID

 1024, // maxSizeOfAttributeValue

 windowDataOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘1587’ on
interface ‘2’. It is getting the
window data of this window. The
application allocated a 1024-byte
buffer at windowDataOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[11]] {PXIMC_queryWindowInformation returns}

windowDataOut is set to “ABC Vendor Digitizer Source”

sizeOut is set to 27

return value is PXIMC_SUCCESS

The address windowDataOut
now contains the windowData.
The sizeOut value means that
the windowData is 27 bytes
long.

Table A-5.Figure A-6 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 92 www.pxisa.org

A Appendix: Example Use
[[12]] PXIMC_queryWindowInformation (

 2, // interfaceID

 1587, // windowID

 PXIMC_U32_WINDOW_CONNECTION_TYPE,

 // attributeID

 4, // maxSizeOfAttributeValue

 connectionTypeOut, // attributeValue

 sizeOut, //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘1587’ on
interface ‘2’. It is getting the
connection type of this window.
The application allocated a single
U32, 4 bytes, at
connectionTypeOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[13]] {PXIMC_queryWindowInformation returns}

connectionTypeOut is set to PXIMC_CONNECTION_SERVER

sizeOut is set to 4

return Value is PXIMC_SUCCESS

connectionTypeOut now
contains the connection type
value.

[[14]] PXIMC_queryWindowInformation (

 2, // interfaceID

 1587, // windowID

 PXIMC_U8_WINDOW_PAIRING_STATE,

 // attributeID

 4, // maxSizeOfAttributeValue

 pairingStateOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 0 is getting information
about windowID ‘1587’ on
interface ‘2’. It is getting the
pairing state of this window. The
application allocated a single
U32, 4 bytes, at
pairingStateOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[15]] {PXIMC_queryWindowInformation returns}

pairingStateOut is set to PXIMC_WINDOW_UNPAIRED

sizeOut is set to 4

return Value is PXIMC_SUCCESS

pairingStateOut now
contains the connection type
value.

Table A-5.Figure A-6 Footnotes (Continued)

Footnote Code Explanation
© PXI Systems Alliance 93 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
[[16]] PXIMC_requestWindowLogicalAsClient (

 2, //interfaceID,

 0xABCD1000, //protocolNumber

 0x1000, // maxLocalSize

 0x400, // minLocalSize

 0, // maxRemoteSize

 0, // minRemoteSize

 1587, // uniqueIdentifier

 sessionNumberOut //sessionNumber

);

After examining the attributes of
window ‘1587’, System 0 wants
to attempt to connect to it. It
requests a window against
interface 2, window 1587.

[[17]] {PXIMC_waitForConnection returns}

remoteAddressOut is set to process memory-mapped pointer
of the remote window

remoteSizeOut is set to set to the actual size of the remote
window

localAddressOut is set to process memory-mapped pointer of
the local window

localSizeOut is set to the actual size of the local window

return Value is PXIMC_SUCCESS

System 1’s connection has been
established once System 0
requested a compatible window,
and the PXImc interface paired
the System 0 and System 1
window requests. System 1 gets
two pointers back,
remoteAddressOut and
localAddressOut, that it can
use to access the local and remote
window.

[[18]] PXIMC_getPhysicalAddress (

 15, //sessionNumber

 physicalAddressOut //physicalAddress

);

System 1 calls
getPhysicalAddress to get
the physical address to which the
digitizer will directly source its
data.

[[19]] {PXIMC_getPhysicalAddress returns}

 physicalAddressOut is set to the physical address of the
remote window

 return Value is PXIMC_SUCCESS

System 1 now has the physical
address to provide to the digitizer.

[[20]] {System 1 Application provides physicalAddressOut to the
digitizer}

The means for the System 1
Application to communicate the
physical address to the digitizer is
beyond the scope of this
specification.

[[21]] {PXIMC_requestWindowLogicalAsClient returns}

 sessionNumberOut is set to 4

 return Value is PXIMC_SUCCESS

The window request on System 0
is successful. The
sessionNumber ‘4’
corresponds with this window
request. The client window
request has been paired with a
compatible server.

Table A-5.Figure A-6 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 94 www.pxisa.org

A Appendix: Example Use
A.4 Hardware sourcing data directly to hardware
Using the configuration shown in Figure A-1, the DAQ card on System 0 may want to receive data directly
from the digitizer present in System 1 over PXImc. A common scenario where this type of connection is
desired is if an output device is directly replaying data received by an input device. This section describes a
common way this connection can be established.

While there are no processes directly participating in data transactions, a process is necessary on both
System 0 and System 1 to establish the connection. After the connection is established, both the System 0 and
System 1 processes are idle. The PXImc connection between System 0 and System 1 is represented by a
unique interface. The interface between the two systems is returned on each system to the process by calling
PXIMC_findInterfaces.

The DAQ card on System 0 must have the same interpretation of the data as the digitizer in System 1. As the
DAQ card's interpretation of data is fixed by its register map, the System 0 digitizer must be able to source
the data in a way that DAQ card can interpret it. The interpretation of the data is indicated by the protocol
used to initiate the connection. To establish a connection, both processes must use the same
protocolNumber.

The processes can initialize a connection by using a client/server relationship. The System 0 process must act
as the "server", being the first to initiate the connection. The System 1 process must then act as the "client",
initiating the connection after the server has initiated its portion of the connection. The PXImc

[[22]] PXIMC_waitForConnection (

 4, // sessionNumber

 0x0, //timeoutInMilliseconds

 remoteAddressOut,// mappedRemoteAddress

 remoteSizeOut, // remoteSizeInBytes

 localAddressOut, // mappedLocalAddress

 localSizeOut // localSizeInBytes

);

System 0 waits until its window
request is paired with a
compatible window request on
the remote system. Because its
client window request was
successful, it knows it has already
been paired with a compatible
server, but needs to call
waitForConnection to get the
pointers to the local and remote
windows.

[[23]] {PXIMC_waitForConnection returns}

remoteAddressOut is set to NULL, as there is no remote
window

remoteSizeOut is set to set to zero, as there is no remote
window

localAddressOut is set to process memory-mapped pointer of
the local window

localSizeOut is set to the actual size of the local window

return Value is PXIMC_SUCCESS

System 0’s
waitForConnection returns.
System 0 gets
localAddressOut that it can
use to access the local window.
Any data written by the digitizer
to the physical address provided
to it in [[20]] will be available at
localAddressOut.

Table A-5.Figure A-6 Footnotes (Continued)

Footnote Code Explanation
© PXI Systems Alliance 95 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
implementation will select the hardware resources that best meet the requirements of the connection. The
physical resources used are determined based on the parameters of the connection request. System 0 will
initiate the connection as the "server", and System 1 as the "client".

The System 0 process must determine what its requirements are for the local window. In this case, hardware
on System 1 needs to write data to hardware on System 0. Therefore the System 0 process will request a local
window where localSize is the local window size that the hardware is able to use. System 0 would set the
localSize to the DAQ card base address register size.

This connection must use Physical window connection type because the destination is a physical address that
is being manually supplied. The physicalAddress parameter must be the physical address that System 1
is being enabled to write to, in this case the physical address of the DAQ card base address register.

The windowData parameter is used to describe characteristics of the local process to the remote system. The
data passed in the windowData is completely up to the process. One example of data that could be passed in
the windowData is a string that describes the function of the process. The data provided in the windowData
can be read on the remote system by calling PXIMC_queryWindowInformation. In this example, System
0 might pass "ABC Vendor DAQ Card 123" for the windowData. The System 0 process may choose to set
the uniqueIdentifier to zero, and allow the PXImc interface to select a uniqueIdentifier on its
behalf.

The System 0 process is now ready to call PXIMC_requestWindowPhysicalAsServer. The interface
returned by PXIMC_findInterfaces can be used to request a memory window on that interface. This
request is made by calling PXIMC_requestWindowPhysicalAsServer. The parameters passed to
PXIMC_requestWindowPhysicalAsServer determine the exact behaviors of
PXIMC_requestWindowPhysicalAsServer, as described above. System 0 calls
PXIMC_requestWindowPhysicalAsServer using the values chosen above.

The process likely should call PXIMC_waitForConnection after requesting its window. If
PXIMC_waitForConnection returns with status PXIMC_SUCCESS, the session has been successfully
paired. This means that the local request matched a remote request, and that the two sessions were paired so
that they can communicate.

The System 1 process can use the interfaceID returned from PXIMC_findInterfaces to call
PXIMC_findWindows, and get the attributes of each window by calling
PXIMC_queryWindowInformation. It can use the attribute values from
PXIMC_queryWindowInformation to determine if any server connections are available on the interface,
and if so, if the System 1 process is compatible with them. The likely way the System 1 process determines
compatibility is through protocolNumber being run on the server session, and also the windowData that
the server session initialized its connection with. In this example, the System 1 process is looking for a
windowData of "ABC Vendor DAQ Card 123". It will find that window after the System 0 process has
successfully called PXIMC_requestWindowPhysicalAsServer as described above. System 1 can then
use the window ID returned by PXIMC_findWindows for the uniqueIdentifier parameter of the window
request, to connect specifically to the session on System 0.

System 1 can use all of the attribute values directly returned by PXIMC_queryWindowInformation for its
window request. In this example, it would set minRemoteSize and maxRemoteSize to the values from the
remote window that it receives when querying the PXIMC_WINDOW_MIN_LOCAL_SIZE and
PXIMC_WINDOW_MAX_LOCAL_SIZE attributes from PXIMC_queryWindowInformation. The window
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 96 www.pxisa.org

A Appendix: Example Use
location type is Physical and the window connection type is Client. The protocolNumber must be the same
number used on System 0, and the windowData can be set to NULL. The System 1 process then calls
PXIMC_requestWindowPhysicalAsClient with these parameter values.

When the System 1 process calls PXIMC_requestWindowPhysicalAsClient, the session pairing
algorithm is executed. As the System 1 request will be paired with the System 0 request, System 0's call to
PXIMC_waitForConnection will now return. Assuming System 1 also calls
PXIMC_waitForConnection immediately after requesting its window, it would also return.

The System 0 process has now completed its initialization of the connection. System 1 can now perform
accesses to the System 0 DAQ card.

Up to this point, this connection initialization has been equivalent to establishing a process-to-hardware
connection.

To allow the System 1 digitizer to source data to the System 0 DAQ card, the System 1 process must now call
PXIMC_getPhysicalAddress. This function returns the physical address that corresponds to the remote
window. The System 1 process must now communicate with the digitizer to configure it with the
physicalAddress that the digitizer can perform writes to. This configuration of the digitizer is specific to
the vendor of the hardware, and is not covered by this specification.

A sequence diagram depicting the connection initialization is provided in Figure 7-8.

Once the System 1 digitizer is programmed with the physical address, it can perform writes to the physical
address. Any writes to the physical address will be received by the PXImc interface, which will write the data
to the physicalAddress provided on System 0, which in this example was the base address register address
of the DAQ card.

The System 1 digitizer has no way to directly assert an event or cause an interrupt on System 0. The System 1
process can call PXIMC_assertEvent at any time to cause the System 0 process to return from
PXIMC_waitForSessionEvent.

After use of the connection is complete, one of the processes must call PXIMC_closeWindow to start
connection PXIMC_cleanup. The other System's process is notified of this by receiving an
PXIMC_EVENT_CONNECTION_CLOSED event. That process should then also call PXIMC_closeWindow. At
this point the connection has been terminated, and the resources used by the connection are freed. An example
of connection termination is shown in Figure A-4.
© PXI Systems Alliance 97 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
Figure A-7.Hardware to Hardware Connection Initiation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 98 www.pxisa.org

A Appendix: Example Use
Table A-6.Figure A-7 Footnotes

Footnote Code Explanation

[[1]] PXIMC_findInterfaces (

 100, //maxNumberOfInterfaces

 interfaceIDsOut, //interfaceIDs

 numInterfacesOut

 //actualNumberOfInterfaces

);

The System 0 Application calls
findInterfaces(). The
application allocated an array of
100 U32s in
interfacesIDsOut, and
passed the array size in
maxNumberOfInterfaces.

[[2]] {PXIMC_findInterfaces returns}

interfaceIDsOut is set to 12

numInterfacesOut is set to 1

return value is PXIMC_SUCCESS

One interface was found. Its
interface ID is ‘12’.

[[3]] {System 0 Application determines BAR address and size of the
DAQ card}

BAR Address = 0x00000000F0000000

BAR Size = 0x10000

The means for the System 0
Application to determine the
address of the DAQ BAR is
beyond the scope of this
specification.

[[4]] PXIMC_requestWindowPhysicalAsServer (

 12, //interfaceID,

 0xABCD1000, //protocolNumber

 0x10000, // localSize

 0, // uniqueIdentifier

 0x00000000F0000000, //physicalAddress

 “ABC Vendor DAQ Card 123”,

 // windowData

 23, // windowDataSize

 sessionNumberOut //sessionNumber

);

System 0 requests its server
window. It requests this window
against interface ID ‘12’, as that
is the interface found with
findInterfaces. It passes the
value ‘23’ for the
windowDataSize because its
windowData is 23 bytes long.

[[5]] {PXIMC_requestWindowLogicalAsServer returns}

sessionNumberOut is set to 15

return value is PXIMC_SUCCESS

The window request is
successful. The sessionNumber
‘15’ corresponds with this
window request. The server
window request has been posted
to the remote system.
© PXI Systems Alliance 99 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
[[6]] PXIMC_waitForConnection (

 15, // sessionNumber

 0xFFFFFFFF, // timeoutInMilliseconds

 remoteAddressOut, // mappedRemoteAddress

 remoteSizeOut, // remoteSizeInBytes

 localAddressOut, // mappedLocalAddress

 localSizeOut // localSizeInBytes

);

System 0 waits until its window
request is paired with a
compatible window request on
the remote system.

[[7]] PXIMC_findInterfaces (

 20, //maxNumberOfInterfaces

 interfaceIDsOut, //interfaceIDs

 numInterfacesOut

 //actualNumberOfInterfaces

);

The System 1 Application calls
findInterfaces(). The
application allocated an array of
20 U32s in interfacesIDsOut,
and passed the array size in
maxNumberOfInterfaces.

[[8]] {PXIMC_findInterfaces returns}

interfaceIDsOut is set to 2

numInterfacesOut is set to 1

return value is PXIMC_SUCCESS

One interface was found. Its
interface ID is ‘2’.

[[9]] PXIMC_findWindows (

 2, // interfaceID

 100, // maxNumberOfWindowIDs

 windowIDsOut, // windowIDs,

 numWindowsOut // actualNumberOfWindowIDs

);

System 1 is locating windows
present on the remote side of
interface ‘2’. The application
allocated an array of 100 U32s in
windowIDsOut, and passed the
array size in
maxNumberOfWindowIDs.

[[10]] {PXIMC_findWindows returns}

windowIDsOut is set to 3

numWindowsOut is set to 1

return value is PXIMC_SUCCESS

One window was found. Its
window ID is ‘3’.

Table A-6.Figure A-7 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 100 www.pxisa.org

A Appendix: Example Use
[[11]] PXIMC_queryWindowInformation (

 2, // interfaceID

 3, // windowID

 PXIMC_U8_WINDOW_DATA, // attributeID

 1024, // maxSizeOfAttributeValue

 windowDataOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 1 is getting information
about windowID ‘3’ on interface
‘2’. It is getting the window data
of this window. The application
allocated a 1024-byte buffer at
windowDataOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[12]] {PXIMC_queryWindowInformation returns}

windowDataOut is set to “ABC Vendor DAQ Card 123”

sizeOut is set to 23

return value is PXIMC_SUCCESS

The address windowDataOut
now contains the windowData.
The sizeOut value means that
the windowData is 23 bytes
long.

[[13]] PXIMC_queryWindowInformation (

 2, // interfaceID

 3, // windowID

 PXIMC_U32_WINDOW_CONNECTION_TYPE,

 // attributeID

 4, // maxSizeOfAttributeValue

 connectionTypeOut, // attributeValue

 sizeOut, //actualSizeOfAttributeValue

);

System 1 is getting information
about windowID ‘3’ on interface
‘2’. It is getting the connection
type of this window. The
application allocated a single
U32, 4 bytes, at
connectionTypeOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[14]] {PXIMC_queryWindowInformation returns}

connectionTypeOut is set to PXIMC_CONNECTION_SERVER

sizeOut is set to 4

return value is PXIMC_SUCCESS

connectionTypeOut now
contains the connection type
value.

[[15]] PXIMC_queryWindowInformation (

 2, // interfaceID

 3, // windowID

 PXIMC_U8_WINDOW_PAIRING_STATE,

 // attributeID

 4, // maxSizeOfAttributeValue

 pairingStateOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 1 is getting information
about windowID ‘3’ on interface
‘2’. It is getting the pairing state
of this window. The application
allocated a single U32, 4 bytes, at
pairingStateOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

Table A-6.Figure A-7 Footnotes (Continued)

Footnote Code Explanation
© PXI Systems Alliance 101 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
[[16]] {PXIMC_queryWindowInformation returns}

pairingStateOut is set to PXIMC_WINDOW_UNPAIRED

sizeOut is set to 4

return value is PXIMC_SUCCESS

pairingStateOut now
contains the connection type
value.

[[17]] PXIMC_queryWindowInformation (

 2, // interfaceID

 3, // windowID

 PXIMC_U8_WINDOW_LOCATION_TYPE,

 // attributeID

 4, // maxSizeOfAttributeValue

 pairingStateOut, // attributeValue

 sizeOut,

 //actualSizeOfAttributeValue

);

System 1 is getting information
about windowID ‘3’ on interface
‘2’. It is getting the location of
this window. The application
allocated a single U32, 4 bytes, at
pairingStateOut, and is
providing the size of the buffer in
maxSizeOfAttributeValue.

[[18]] {PXIMC_queryWindowInformation returns}

pairingStateOut is set to PXIMC_LOCATION_PHYSICAL

sizeOut is set to 4

return value is PXIMC_SUCCESS

pairingStateOut now
contains the connection type
value.

[[19]] PXIMC_requestWindowPhysicalAsClient (

 2, //interfaceID,

 0xABCD1000, //protocolNumber

 0x10000, // maxRemoteSize

 0, // minRemoteSize

 3, // uniqueIdentifier

 sessionNumberOut //sessionNumber

);

After examining the attributes of
window ‘3’, System 1 wants to
attempt to connect to it. It
requests a window against
interface 2, window 3.

[[20]] {PXIMC_waitForConnection returns}

remoteAddressOut is set to NULL, as there is no remote
window

remoteSizeOut is set to set to zero, as there is no remote
window

localAddressOut is set to NULL, as the process cannot access
the local window

localSizeOut is set to zero, as the process cannot access the
local window

return value is PXIMC_SUCCESS

System 0’s connection has been
established once System 1
requested a compatible window,
and the PXImc interface paired
the System 0 and System 1
window requests. System 0
cannot use its window to perform
any I/O, but it has enabled System
1 to access the DAQ BAR.

Table A-6.Figure A-7 Footnotes (Continued)

Footnote Code Explanation
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 102 www.pxisa.org

A Appendix: Example Use
[[21]] {PXIMC_requestWindowLogicalAsClient returns}

 sessionNumberOut is set to 4

 return value is PXIMC_SUCCESS

The window request on System 1
is successful. The
sessionNumber ‘4’
corresponds with this window
request. The client window
request has been paired with a
compatible server.

[[22]] PXIMC_waitForConnection (

 4, // sessionNumber

 0x0, //timeoutInMilliseconds

 remoteAddressOut,// mappedRemoteAddress

 remoteSizeOut, // remoteSizeInBytes

 localAddressOut, // mappedLocalAddress

 localSizeOut // localSizeInBytes

);

System 1 waits until its window
request is paired with a
compatible window request on
the remote system. Because its
client window request was
successful, it knows it has already
been paired with a compatible
server, but needs to call
waitForConnection to get the
pointers to the remote window.

[[23]] {PXIMC_waitForConnection returns}

remoteAddressOut is set to process memory-mapped pointer
of the remote window (the DAQ BAR)

remoteSizeOut is set to set to the actual size of the remote
window (the exact size of the DAQ BAR)

localAddressOut is set to NULL, as there is no local window

localSizeOut is set to zero, as there is no local window

return value is PXIMC_SUCCESS

System 1’s
waitForConnection returns.
System 0 gets two pointers back,
remoteAddressOut and
localAddressOut, that it can
use to access the local and remote
window. localAddressOut
will be NULL and
localSizeOut will be zero, as
there is no local window. When
System 1 accesses
remoteAddressOut, the result
will be that the DAQ BAR in
System 1 is accessed.

[[24]] PXIMC_getPhysicalAddress (

 4, //sessionNumber

 physicalAddressOut //physicalAddress

);

System 1 calls
getPhysicalAddress to get
the physical address to which the
digitizer will directly source its
data.

[[25]] {PXIMC_getPhysicalAddress returns}

 physicalAddressOut is set to the physical address of the
remote window

 return value is PXIMC_SUCCESS

System 1 now has the physical
address to provide to the digitizer.
The means for the System 1
Application to communicate the
physical address to the digitizer is
beyond the scope of this
specification. Once the digitizer
is provided with this physical
address, any data written by the
digitizer to the physical address
will be received by the DAQ card
on System 0.

Table A-6.Figure A-7 Footnotes (Continued)

Footnote Code Explanation
© PXI Systems Alliance 103 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

A Appendix: Example Use
A.5 Process sourcing data to hardware and hardware sourcing
data to process
Using the configuration shown in Figure A-1, a process on System 0 may want to send data directly to the
digitizer present in System 1 over PXImc. At the same time, the process may want to receive data directly
from the digitizer. A common scenario where this type of connection is desired is if a process is directly
configuring an input device, and at the same time the input device is streaming its input data directly to the
process. This section describes how this connection can be established.

This connection should be viewed as two separate connections—one connection for the System 0 process to
source data to the System 1 digitizer, and another connection enabling the digitizer to write data to the
System 0 process. Follow the examples in Section 0 and Section A.3 to set up these two independent
connections.

A.6 Bi-directional link where hardware is sourcing data directly
to hardware in both directions
Using the configuration shown in Figure A-1, the DAQ card in System 0 may want to write data directly the
digitizer in System 1, and at the same time the digitizer may want to write data directly to the DAQ card in
System 0. A common scenario where this type of connection is desired is if one card is controlling the input
device’s control registers, and at the same time the input device is streaming it’s input data directly to the other
hardware. This section describes how this connection can be established.

This connection should be viewed as two separate connections—one enabling the System 1 digitizer to write
to the System 0 DAQ card, and an independent connection enabling the System 0 DAQ card to write to the
System 1 digitizer. Follow the example in Section A.4 two times, inverting the roles of which system acts as
the “server” and which acts as the “client” after executing the example once.
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 104 www.pxisa.org

B Appendix: pximc.h
B. Appendix: pximc.h

#if !defined (__pximc_h__)

#define __pximc_h__

/*---*/

/* Distributed by PXISA */

/* Do not modify the contents of this file. */

/*---*/

/* */

/* Title : pximc.h */

/* Date : 07-30-2009 */

/* Purpose : Definitions for using the PXImc API, compliant with */

/* revision 1.0 of the PXImc software specification */

/* */

/*---*/

#if defined(__cplusplus) || defined(__cplusplus__)

 extern "C" {

#endif

/*- PXIMC Types ---*/

#if defined(_WIN64) || ((defined(WIN32) || defined(_WIN32) || defined(__WIN32__)
|| defined(__NT__)) && !defined(_NI_mswin16_))

#if (defined(_MSC_VER) && (_MSC_VER >= 1200)) || (defined(_CVI_) && (_CVI_ >=
700)) || (defined(__BORLANDC__) && (__BORLANDC__ >= 0x0520))

#if ((defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__NT__))
&& !defined(_NI_mswin16_))

#define _PXIMC_FUNC _stdcall

#elif defined (WIN64)

#define _PXIMC_FUNC

#else

#endif

typedef __int8 int8_t;

typedef unsigned __int8 uint8_t;

typedef __int16 int16_t;

typedef unsigned __int16 uint16_t;

typedef __int32 int32_t;

typedef unsigned __int32 uint32_t;

typedef __int64 int64_t;

typedef unsigned __int64 uint64_t;
© PXI Systems Alliance 105 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

B Appendix: pximc.h
#endif

#elif defined(__GNUC__) && (__GNUC__ >= 3)

#define _PXIMC_FUNC

#include <limits.h>

#include <sys/types.h>

#include <stdint.h>

#else

/* This platform does not support 64-bit types */

#endif

#if !defined (UINT64_MAX)

#define UINT64_MAX 18446744073709551615ULL

#endif

#if !defined (UINT32_MAX)

#define UINT32_MAX 4294967295UL

#endif

typedef int32_t tPXIMC_Status;

/*---*/

/* */

/* PXIMC API function definitions */

/* */

/*---*/

tPXIMC_Status _PXIMC_FUNC PXIMC_findInterfaces (

 uint32_t maxNumberOfInterfaces,

 uint32_t * interfaceIDs,

 uint32_t * actualNumberOfInterfaces

);

tPXIMC_Status _PXIMC_FUNC PXIMC_queryInterfaceInformation (

 uint32_t interfaceID,

 uint32_t attributeID,

 uint32_t maxSizeOfAttributeValue,

 void * attributeValue,

 uint32_t * actualSizeOfAttributeValue

);

tPXIMC_Status _PXIMC_FUNC PXIMC_waitForInterfaceEvent (

 uint32_t interfaceID,

 uint32_t timeoutInMilliseconds,

 uint32_t * reasonCode

);
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 106 www.pxisa.org

B Appendix: pximc.h
tPXIMC_Status _PXIMC_FUNC PXIMC_findWindows (

 uint32_t interfaceID,

 uint32_t maxNumberOfWindowIDs,

 uint32_t * windowIDs,

 uint32_t * actualNumberOfWindowIDs

);

tPXIMC_Status _PXIMC_FUNC PXIMC_queryWindowInformation (

 uint32_t interfaceID,

 uint32_t windowID,

 uint32_t attributeID,

 uint32_t maxSizeOfAttributeValue,

 void * attributeValue,

 uint32_t * actualSizeOfAttributeValue

);

tPXIMC_Status _PXIMC_FUNC PXIMC_requestWindowLogicalAsServer (

 uint32_t interfaceID,

 uint32_t protocolNumber,

 uint64_t maxLocalSize,

 uint64_t minLocalSize,

 uint64_t maxRemoteSize,

 uint64_t minRemoteSize,

 uint32_t uniqueIdentifier,

 const uint8_t * windowData,

 uint32_t windowDataSize,

 uint32_t * sessionNumber

);

tPXIMC_Status _PXIMC_FUNC PXIMC_requestWindowLogicalAsClient (

 uint32_t interfaceID,

 uint32_t protocolNumber,

 uint64_t maxLocalSize,

 uint64_t minLocalSize,

 uint64_t maxRemoteSize,

 uint64_t minRemoteSize,

 uint32_t uniqueIdentifier,

 uint32_t * sessionNumber

);

tPXIMC_Status _PXIMC_FUNC PXIMC_requestWindowLogicalAsPeer (

 uint32_t interfaceID,

 uint32_t protocolNumber,

 uint64_t maxLocalSize,

 uint64_t minLocalSize,

 uint64_t maxRemoteSize,
© PXI Systems Alliance 107 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

B Appendix: pximc.h
 uint64_t minRemoteSize,

 uint32_t uniqueIdentifier,

 const uint8_t * windowData,

 uint32_t windowDataSize,

 uint32_t * sessionNumber

);

tPXIMC_Status _PXIMC_FUNC PXIMC_requestWindowPhysicalAsServer (

 uint32_t interfaceID,

 uint32_t protocolNumber,

 uint64_t localSize,

 uint32_t uniqueIdentifier,

 uint64_t physicalAddress,

 const uint8_t * windowData,

 uint32_t windowDataSize,

 uint32_t * sessionNumber

);

tPXIMC_Status _PXIMC_FUNC PXIMC_requestWindowPhysicalAsClient (

 uint32_t interfaceID,

 uint32_t protocolNumber,

 uint64_t maxRemoteSize,

 uint64_t minRemoteSize,

 uint32_t uniqueIdentifier,

 uint32_t * sessionNumber

);

tPXIMC_Status _PXIMC_FUNC PXIMC_waitForConnection (

 uint32_t sessionNumber,

 uint32_t timeoutInMilliseconds,

 void ** mappedRemoteAddress,

 uint64_t * remoteSizeInBytes,

 void ** mappedLocalAddress,

 uint64_t * localSizeInBytes

);

tPXIMC_Status _PXIMC_FUNC PXIMC_getPhysicalAddress (

 uint32_t sessionNumber,

 uint64_t * physicalAddress

);

tPXIMC_Status _PXIMC_FUNC PXIMC_enableDeviceAccess (

 uint32_t sessionNumber,

 uint32_t accessMode,

 uint32_t deviceBusNumber,

 uint32_t deviceDevNumber,
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 108 www.pxisa.org

B Appendix: pximc.h
 uint32_t deviceFuncNumber

);

tPXIMC_Status _PXIMC_FUNC PXIMC_assertEvent (

 uint32_t sessionNumber

);

tPXIMC_Status _PXIMC_FUNC PXIMC_waitForSessionEvent (

 uint32_t sessionNumber,

 uint32_t timeoutInMilliseconds,

 uint32_t * reasonCode

);

tPXIMC_Status _PXIMC_FUNC PXIMC_closeWindow (

 uint32_t sessionNumber

);

tPXIMC_Status _PXIMC_FUNC PXIMC_cleanup ();

/*---*/

/* */

/* PXIMC API function constants */

/* */

/*---*/

enum

{

 PXIMC_SPEC_VERSION = 0x00010000

};

enum

{

 _PXIMC_STR_BASE = 0x10000000UL,

 _PXIMC_U8_BASE = 0x20000000UL,

 _PXIMC_U32_BASE = 0x30000000UL,

 _PXIMC_U64_BASE = 0x40000000UL

};

/*---*/

/* PXIMC_queryInterfaceInformation */

/*---*/

/* PXIMC_queryInterfaceInformation attributes */

/* string attributes for PXIMC_queryInterfaceInformation */
© PXI Systems Alliance 109 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

B Appendix: pximc.h
enum ePXIMC_QueryInterfaceInformation_StrAttribute

{

 PXIMC_STR_MANF_NAME = (_PXIMC_STR_BASE + 1UL),

 /*0x10000001, 268435457 */

 PXIMC_STR_MODEL_NAME = (_PXIMC_STR_BASE + 2UL),

 /*0x10000002, 268435458 */

 PXIMC_STR_SERIAL_NUM = (_PXIMC_STR_BASE + 3UL),

 /*0x10000003, 268435459 */

 PXIMC_STR_LOG_DATA = (_PXIMC_STR_BASE + 4UL),

 /*0x10000004, 268435460 */

 PXIMC_STR_INTERFACE_NAME = (_PXIMC_STR_BASE + 5UL),

 /*0x10000005, 268435461 */

 PXIMC_STR_REMOTE_OS = (_PXIMC_STR_BASE + 6UL)

 /*0x10000006, 268435462 */

};

/* u32 attributes for PXIMC_queryInterfaceInformation */

enum ePXIMC_QueryInterfaceInformation_U32Attribute

{

 PXIMC_U32_PROTOCOL_VERSION = (_PXIMC_U32_BASE + 1UL),

 /*0x30000001, 805306369 */

 PXIMC_U32_MANF_ID = (_PXIMC_U32_BASE + 2UL),

 /*0x30000002, 805306370 */

 PXIMC_U32_INTERFACE_STATE = (_PXIMC_U32_BASE + 3UL),

 /*0x30000003, 805306371 */

 PXIMC_U32_INTERFACE_DEVICE_ID = (_PXIMC_U32_BASE + 4UL),

 /*0x30000004, 805306372 */

 PXIMC_U32_INTERFACE_VENDOR_ID = (_PXIMC_U32_BASE + 5UL),

 /*0x30000005, 805306373 */

 PXIMC_U32_INTERFACE_SS_ID = (_PXIMC_U32_BASE + 6UL),

 /*0x30000006, 805306374 */

 PXIMC_U32_INTERFACE_SS_VENDOR_ID = (_PXIMC_U32_BASE + 7UL),

 /*0x30000007, 805306375 */

 PXIMC_U32_INTERFACE_BUS = (_PXIMC_U32_BASE + 8UL),

 /*0x30000008, 805306376 */

 PXIMC_U32_INTERFACE_DEV = (_PXIMC_U32_BASE + 9UL),

 /*0x30000009, 805306377 */

 PXIMC_U32_INTERFACE_FUNC = (_PXIMC_U32_BASE + 10UL),

 /*0x3000000A, 805306378 */

 PXIMC_U32_INTERFACE_LOCAL = (_PXIMC_U32_BASE + 11UL),

 /*0x3000000B, 805306379 */

 PXIMC_U32_REMOTE_ENDIANNESS = (_PXIMC_U32_BASE + 12UL),

 /*0x3000000C, 805306380 */

 PXIMC_U32_REMOTE_WORD_SIZE = (_PXIMC_U32_BASE + 13UL)

 /*0x3000000D, 805306381 */

};
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 110 www.pxisa.org

B Appendix: pximc.h
/* end PXIMC_queryInterfaceInformation attributes */

/* PXIMC_U32_INTERFACE_STATE return values */

enum ePXIMC_QueryInterfaceInformation_InterfaceState

{

 PXIMC_STATE_UP = 1,

 PXIMC_STATE_DOWN = 2

};

/* PXIMC_U32_INTERFACE_LOCAL return values */

enum ePXIMC_QueryInterfaceInformation_InterfaceLocal

{

 PXIMC_LOCAL = 1,

 PXIMC_REMOTE = 2

};

/*---*/

/* end PXIMC_queryInterfaceInformation */

/*---*/

/* PXIMC_waitForInterfaceEvent */

enum ePXIMC_WaitForInterfaceEvent_ReasonCode

{

 PXIMC_EVENT_INTERFACE_STATE_CHANGE = 1,

 PXIMC_EVENT_WINDOW_STATE_CHANGE = 2

};

/*---*/

/* PXIMC_queryWindowInformation */

/*---*/

/* PXIMC_queryWindowInformation attributes */

/* u8 array attributes */

enum ePXIMC_QueryWindowInformation_U8Attribute

{

 PXIMC_U8_WINDOW_DATA = (_PXIMC_U8_BASE + 1UL)

 /*0x20000001, 536870913 */

};

/* u32 attributes */

enum ePXIMC_QueryWindowInformation_U32Attribute

{

 PXIMC_U32_WINDOW_CONNECTION_TYPE = (_PXIMC_U32_BASE + 1UL),
© PXI Systems Alliance 111 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

B Appendix: pximc.h
 /*0x30000001, 805306369 */

 PXIMC_U32_WINDOW_LOCATION_TYPE = (_PXIMC_U32_BASE + 2UL),

 /*0x30000002, 805306370 */

 PXIMC_U32_WINDOW_PROTOCOL_NUMBER = (_PXIMC_U32_BASE + 3UL),

 /*0x30000003, 805306371 */

 PXIMC_U32_WINDOW_PAIRING_STATE = (_PXIMC_U32_BASE + 4UL),

 /*0x30000004, 805306372 */

 PXIMC_U32_SESSION_EVENT_STATUS = (_PXIMC_U32_BASE + 5UL)

 /*0x30000005, 805306373 */

};

/* u64 attributes */

enum ePXIMC_QueryWindowInformation_U64Attribute

{

 PXIMC_U64_WINDOW_MIN_REMOTE_SIZE = (_PXIMC_U64_BASE + 1UL),

 /*0x40000001, 1073741825 */

 PXIMC_U64_WINDOW_MAX_REMOTE_SIZE = (_PXIMC_U64_BASE + 2UL),

 /*0x40000002, 1073741826 */

 PXIMC_U64_WINDOW_MIN_LOCAL_SIZE = (_PXIMC_U64_BASE + 3UL),

 /*0x40000003, 1073741827 */

 PXIMC_U64_WINDOW_MAX_LOCAL_SIZE = (_PXIMC_U64_BASE + 4UL)

 /*0x40000004, 1073741828 */

};

/* end PXIMC_queryWindowInformation attributes */

/* PXIMC_U32_WINDOW_CONNECTION_TYPE return values */

enum ePXIMC_QueryWindowInformation_WindowConnectionType

{

 PXIMC_CONNECTION_SERVER = 1,

 PXIMC_CONNECTION_CLIENT = 2,

 PXIMC_CONNECTION_PEER = 3

};

/* PXIMC_U32_WINDOW_LOCATION_TYPE return values */

enum ePXIMC_QueryWindowInformation_WindowLocationType

{

 PXIMC_LOCATION_LOGICAL = 1,

 PXIMC_LOCATION_PHYSICAL = 2

};

/* PXIMC_U32_WINDOW_PAIRING_STATE return values */

enum ePXIMC_QueryWindowInformation_WindowPairingState

{

 PXIMC_WINDOW_PAIRED = 1,

 PXIMC_WINDOW_UNPAIRED = 2

};
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 112 www.pxisa.org

B Appendix: pximc.h
/* PXIMC_U32_WINDOW_EVENT_STATUS return values */

enum ePXIMC_QueryWindowInformation_WindowEventStatus

{

 PXIMC_WINDOW_REMOTE_EVENT_PENDING = 1,

 PXIMC_WINDOW_REMOTE_SESSION_WAITING = 2,

 PXIMC_WINDOW_LOCAL_EVENT_PENDING = 4,

 PXIMC_WINDOW_LOCAL_SESSION_WAITING = 8

};

/*---*/

/* end PXIMC_queryWindowInformation */

/*---*/

/* PXIMC_requestWindow */

enum

{

 PXIMC_MAXIMUM_WINDOW_SIZE = UINT64_MAX

};

enum

{

 PXIMC_TIMEOUT_INFINITE = UINT32_MAX

};

/* PXIMC_enableDeviceAccess */

enum ePXINTB_EnableDeviceAccess_AccessMode

{

 PXIMC_DEVICE_ACCESS_READ = 1,

 PXIMC_DEVICE_ACCESS_WRITE = 2,

 PXIMC_DEVICE_ACCESS_CLEAR_ALL = 0x80000000

};

/* PXIMC_waitForSessionEvent */

enum ePXIMC_WaitForSessionEvent_ReasonCode

{

 PXIMC_EVENT_ASSERTED = 1,

 PXIMC_EVENT_CONNECTION_CLOSED = 2,

 PXIMC_EVENT_INTERFACE_DOWN = 3

};

/*---*/

/* */
© PXI Systems Alliance 113 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

B Appendix: pximc.h
/* PXIMC API status values */

/* */

/*---*/

enum

{

 _PXIMC_ERROR_BASE = (0x80000000L),

 _PXIMC_WARNING_BASE = 0x10000000UL

};

enum ePXIMC_Status

{

/* Success */

 PXIMC_SUCCESS = 0,

/* Error */

 PXIMC_INSUFFICIENT_SPACE = _PXIMC_ERROR_BASE + 0x1000L,

 /*0x80001000, -2147479552*/

 PXIMC_INVALID_INTERFACE = _PXIMC_ERROR_BASE + 0x1001L,

 /*0x80001001, -2147479551*/

 PXIMC_INTERFACE_DOWN = _PXIMC_ERROR_BASE + 0x1002L,

 /*0x80001002, -2147479550*/

 PXIMC_NSUP_ATTRIBUTE = _PXIMC_ERROR_BASE + 0x1003L,

 /*0x80001003, -2147479549*/

 PXIMC_INVALID_ARGUMENT = _PXIMC_ERROR_BASE + 0x1004L,

 /*0x80001004, -2147479548*/

 PXIMC_SPACE_NOT_AVAILABLE = _PXIMC_ERROR_BASE + 0x1005L,

 /*0x80001005, -2147479547*/

 PXIMC_UID_CONFLICT = _PXIMC_ERROR_BASE + 0x1006L,

 /*0x80001006, -2147479546*/

 PXIMC_NO_PAIRING = _PXIMC_ERROR_BASE + 0x1007L,

 /*0x80001007, -2147479545*/

 PXIMC_PHY_RESOURCE_NOT_AVAILABLE = _PXIMC_ERROR_BASE + 0x1008L,

 /*0x80001008, -2147479544*/

 PXIMC_INVALID_SESSION = _PXIMC_ERROR_BASE + 0x1009L,

 /*0x80001009, -2147479543*/

 PXIMC_NO_WINDOW = _PXIMC_ERROR_BASE + 0x100AL,

 /*0x8000100A, -2147479542*/

 PXIMC_SESSION_CLOSED = _PXIMC_ERROR_BASE + 0x100BL,

 /*0x8000100B, -2147479541*/

 PXIMC_INVALID_WINDOW = _PXIMC_ERROR_BASE + 0x100CL,

 /*0x8000100C, -2147479540*/

 PXIMC_INVALID_RESOURCE = _PXIMC_ERROR_BASE + 0x100DL,

 /*0x8000100D, -2147479539*/

 PXIMC_ALIGNMENT_ERROR = _PXIMC_ERROR_BASE + 0x100EL,

 /*0x8000100E, -2147479538*/
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 114 www.pxisa.org

B Appendix: pximc.h
/* Warning */

 PXIMC_NO_PROVIDER = _PXIMC_WARNING_BASE + 0x1000UL,

 /*0x10001000, 268439552*/

 PXIMC_TIMEOUT = _PXIMC_WARNING_BASE + 0x1001UL,

 /*0x10001001, 268439553*/

};

#if defined(__cplusplus) || defined(__cplusplus__)

}

#endif

#endif /* #if !defined (__pximc_h__) */

/*- The End ---*/
© PXI Systems Alliance 115 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

C Appendix: PXImc Background Information
C. Appendix: PXImc Background
Information

This section includes some background information about Non-transparent bridges, PCI(e) BARs, BIOS
operations, and device drivers. This information is intended only for reference for potential implementers of
a PXImc Logic Block. This section contains no rules that are requirements of the PXImc Specification.

C.1 PCI(e) BARs and the BIOS
Non-transparent bridges (NTBs) have one or more Base Address Register (BAR). The size of the BAR(s) is
set based on hardware-specific configuration. Some BARs may have a fixed size, others may be configurable.
Because of this hardware-specific behavior, both the size of the BARs and how the sizes of BARs are set
aren’t covered here; these details are left for the PXImc Logic Block Vendor to determine individually.

The BAR sizes of the NTB are fixed for a given boot of the system. It is customary for the system BIOS to
enumerate all PCI(e) devices in the system, determine the memory and I/O resource needs of the devices, and
assign a specific address to the BARs of every PCI(e) device. Once that process is complete, both the size and
location of the BARs are set until the PCI(e) tree is re-initialized (usually at restart). After the PCI(e) tree
initialization algorithm completes, an NTB is in the following state:

Figure C-1.PXImc Initialization Overview

NTB

0xFFFFFFFF

0x00000000

0xFFFFFFFF

0x00000000

NTB BAR

NTB BAR

System 0 System 1

Notes:
1) Physical NTB actually resides within the PXImc device, as described in the Hardware spec
2) 32-bit system depicted. Concept also applies to 64-bit systems
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 116 www.pxisa.org

C Appendix: PXImc Background Information
C.2 PCI(e) Device Drivers
The operating system attempts to load a device driver for every PCI(e) device in the system. The PXImc
Logic Block Vendor must provide a device driver to get loaded by both systems’ operating system. This
device driver is responsible for understanding the behaviors and functionality of the hardware it represents.
One function the NTB device driver needs to be able to accomplish is to be able to map accesses of the
NTB BAR(s) to physical memory. The means for generating this mapping cannot be covered here, as each
NTB may implement this differently (direct address translation vs. look up table translation, for example).
The NTB driver must be able to create some memory mapping where BAR accesses get translated to physical
memory accesses, and the NTB driver needs to own the physical memory that is targeted. The simplest
depiction of this functionality is below.

Figure C-2.Access Mapping of NTB BAR(s) to Physical Memory

NTB

NTB BAR

NTB BAR

Driver malloc’ed
memory

Driver malloc’ed
memory

0xFFFFFFFF

0x00000000

0xFFFFFFFF

0x00000000

System 0 System 1

Notes:
1) Physical NTB actually resides within the PXImc Device, as described in the HW spec
2) 32-bit system depicted. Concept also applies to 64-bit systems
© PXI Systems Alliance 117 PXI MultiComputing Software Specification Rev. 1.1 5/31/18

C Appendix: PXImc Background Information
C.3 I/O via PXImc
The means for I/O over PXImc is that client processes are given temporary ownership of slices of address
space in both the NTB BAR and/or the physical memory (RAM) that the NTB driver allocated. For example,
if PXImc clients on both System 0 and System 1 want to communicate using some protocol (protocol 0x5000
for this example), the objective is to allow the client on System 0 to own a slice of the NTB BAR that gets
mapped to physical memory on System 1, where its communication partner can also perform accesses to that
physical memory. Also, the client on System 0 should be allowed to own a slice of the local physical memory
(depicted in the figure by the “Driver malloc’ed memory”) that can be targeted by System 1 accesses to a slice
of System 1’s BAR.

Figure C-3.I/O Via PXImc

The objective that communication initialization needs to achieve is matching a PXImc client on System 0 with
a PXImc client on System 1, then determining how much physical memory on both systems the connection
needs, and then granting ownership of that system memory, and of the associated BAR space, to the two
paired PXImc clients. It’s not a requirement that physical memory is needed on both systems, the two
matched PXImc clients may decide to operate only within one system’s physical memory.

The PXImc API allows a session to be paired with another session (through the session pairing criteria), and
a way for this paired connection to be given memory on one or both sides. The PXImc Logic Block Vendor
needs to abstract the details of dealing with BAR sizes, number of BARs, and how BARs get mapped to
physical memory from the user of PXImc. These details are outside the scope of the specification; the Logic
Block Vendor needs to handle them in some way such that the above functionality is possible.

NTB

NTB BAR

NTB BAR

Driver malloc’ed
memory

Driver malloc’ed
memory

Available

Prot = 0x5000

Available

Prot = 0x5000

Available

Prot = 0x5000

Available

Prot = 0x5000

Process now
has two pointers:

Read
/local
Write

/remote

0xFFFFFFFF

0x00000000

0xFFFFFFFF

0x00000000

System 0 System 1
PXI MultiComputing Software Specification Rev. 1.1 5/31/18 118 www.pxisa.org

	PXI-8 PXI MultiComputing Software Specification
	IMPORTANT INFORMATION
	Copyright
	NOTICE
	Trademarks

	PXI MultiComputing Software Specification Revision History

	Contents
	1. Introduction
	2. PXImc Software Architecture Overview
	3. API
	4. PXImc Shared Component: PXImc Dispatcher
	5. Protocols
	6. Virtual Mesh
	A. Appendix: Example Use
	B. Appendix: pximc.h
	C. Appendix: PXImc Background Information
	Tables
	Figures

	1. Introduction
	1.1 Objectives
	1.2 Intended Audience and Scope
	1.3 Background and Terminology
	1.4 Applicable Documents

	2. PXImc Software Architecture Overview
	2.1 Overview
	2.2 PXImc Physical Layer
	2.3 Vendor Specific Kernel Layer
	2.4 Vendor Specific User Layer
	2.5 Shared Component Layer

	3. API
	3.1 Overview
	3.2 Objectives
	3.3 API
	3.3.1 Interfaces
	3.3.1.1 PXIMC_findInterfaces
	3.3.1.2 PXIMC_queryInterfaceInformation
	3.3.1.3 PXIMC_waitForInterfaceEvent
	3.3.1.4 PXIMC_findWindows
	3.3.1.5 PXIMC_queryWindowInformation

	3.3.2 Sessions
	3.3.2.1 Opening a Session
	3.3.2.2 Session Pairing
	3.3.2.3 Request Window API
	3.3.2.3.1 PXIMC_requestWindowLogicalAsServer
	3.3.2.3.2 PXIMC_requestWindowLogicalAsClient
	3.3.2.3.3 PXIMC_requestWindowLogicalAsPeer
	3.3.2.3.4 PXIMC_requestWindowPhysicalAsServer
	3.3.2.3.5 PXIMC_requestWindowPhysicalAsClient

	3.3.2.4 Session Pairing API
	3.3.2.4.1 PXIMC_waitForConnection

	3.3.3 Window Physical Addresses
	3.3.3.1 PXIMC_getPhysicalAddress
	3.3.3.2 PXIMC_enableDeviceAccess

	3.3.4 Session Events
	3.3.4.1 PXIMC_assertEvent
	3.3.4.2 PXIMC_waitForSessionEvent

	3.3.5 Closing a Session
	3.3.5.1 PXIMC_closeWindow
	3.3.5.2 PXIMC_cleanup

	4. PXImc Shared Component: PXImc Dispatcher
	4.1 Overview
	4.2 Objectives
	4.3 Behavior
	4.3.1 PXIMC_findInterfaces
	4.3.2 Interface-based functions
	4.3.3 Requesting a window
	4.3.4 Session-based functions
	4.3.5 PXIMC_cleanup

	4.4 Registration
	4.4.1 Windows
	4.4.1.1 32-bit Windows
	4.4.1.2 64-bit Windows

	4.4.2 Linux

	4.5 Installation
	4.5.1 32 bit Windows
	4.5.2 64 bit Windows
	4.5.3 Linux
	4.5.3.1 32-bit Linux
	4.5.3.2 64-bit Linux

	5. Protocols
	5.1 Overview

	6. Virtual Mesh
	6.1 Overview

	A. Appendix: Example Use
	A.1 Process to Process
	A.2 Process sourcing data directly to hardware
	A.3 Hardware sourcing data directly to process
	A.4 Hardware sourcing data directly to hardware
	A.5 Process sourcing data to hardware and hardware sourcing data to process
	A.6 Bi-directional link where hardware is sourcing data directly to hardware in both directions

	B. Appendix: pximc.h
	C. Appendix: PXImc Background Information
	C.1 PCI(e) BARs and the BIOS
	C.2 PCI(e) Device Drivers
	C.3 I/O via PXImc

